△ABCの内心をI,外心をOとする.
∠AIB=145°のとき∠AOBの角度を度数法で解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
△ABCの重心をGとするとAB=5, AC=7, BG=2であった.
このときCGの長さの2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
AB=36, AC=24の△ABCがあり線分ABを1:2に内分する点D, 線分ACを3:1に
内分する点EをとりBEとCDの交点をPとするとAP=14であった.
このときBCの長さの2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
AB=AC=90の△ABCがあり線分BCの中点をMとすると
△ABCの垂心Hは線分AMを4:1に内分した.
このとき△ABCの面積の2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
外心をOとする△ABCがあり線分BC上に点Dをおくと以下が成立した.
AD=CD, BD-CD=15, OB=24, OD=9
このときABの長さを解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
AB=33, BC=41, CA=26の△ABCの面積の2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
正三角形ABCとAP=2, BP=CP=3を満たす点Pがある.
ABの長さとしてあり得る値の総和の2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
凸四角形ABCDは内接円と外接円を持ち,AB=5, DC=3, AB//DCであった.
ACの長さの2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
△ABCの内心をI,∠A内の傍心をJとすると以下が成立した.
BI=7, CI=15, IJ=25
このときBCの長さを解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
AB=15, AC=24の鋭角三角形ABCがあり内心をI, 垂心をHとすると
4点BCHIは同じ円Γ上にあった.このとき円Γの半径の長さの2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
AB=30, AC=36の△ABCがあり線分BC上にBDECの順に並びBD:DE:EC=1:5:3となるよう
点D,Eをとると,線分ABとACに接し点D,Eを通る円が存在した.
このときBCの長さの2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
中心をOとする円上に点A,Bがあり,線分AB上に点PをとるとAB=7, AP=2, OP=3であった.
このときAOの長さの2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.