数学の問題一覧

カテゴリ
以上
以下

Ryomanic

公開日時: 2025年7月17日21:42 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数

問題文

gcd(a,b)=1 なる2以上の正整数a,bについて、
$$a^3b-ab^3$$
が平方数とならないことを示せ。

解答形式

解答の文章を入力してください(省略ok)

MrKOTAKE

公開日時: 2025年7月16日9:01 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

鋭角三角形 $ABC$ があり,$A,B$ から対辺におろした垂線の足をそれぞれ $D,E$ とし,線分 $DE$ 上に点 $P$ をとると,以下が成立しました.

$$AB=3,\quad AC=5,\quad \angle PAB=\angle PBC,\quad \angle PAC =\angle PCB $$
このとき線分 $AP$ の長さは互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください

udonoisi

公開日時: 2025年7月12日10:55 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

非負整数 $n$ に対して, $a_n$ を以下で定めます.$$a_0=1,\quad a_{n+1}=10a_n+4$$ このとき, $a_n$ が累乗数となるような非負整数 $n$ に対して, $a_n$ の総和を求めてください.
ただし, 累乗数とは, 自然数 $a$ と$2$ 以上の自然数 $b$ を用いて $a^b$ と表せる数です.

解答形式

例)整数を答えてください.

MrKOTAKE

公開日時: 2025年7月9日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正三角形 $ABC$ があり,その内部に点 $D$ をとると,
$$AD=33,\quad BD=4,\quad \angle ADB=120^\circ$$
が成立しました.線分 $CD$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年7月9日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

鋭角三角形 $ABC$ があり,その外心を $O$ とします.直線 $AO,BC$ の交点を $D$,直線 $BO,AC$ の交点を $E$ とすると,
$$BD=6,\quad CD=3,\quad CE:EA=3:4$$
が成立しました.このとき,線分 $AC$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年7月9日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ があり,その内心を $I$ とし,内接円 $\omega$ と線分 $BC,CA,AB$ との接点をそれぞれ $D,E,F$ とします.直線 $BC,EF$ の交点を $P$ とし,$I$ から線分 $AP$ におろした垂線の足を $Q$,線分 $DQ$ と $\omega$ の交点のうち $D$ でないものを $R$ とすると,
$$RD=9,\quad RQ=6,\quad AF=10$$
が成立しました.このとき,線分 $PR$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください

MrKOTAKE

公開日時: 2025年7月9日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

鋭角三角形 $ABC$ があり,辺 $BC$ の中点を $M$ とし,線分 $AC$ 上に点 $D$ を,$\angle CBD=\angle CAM$ を満たすようにとると,
$$AD=1,\quad BD=6\sqrt{2},\quad DM=4\sqrt{2}$$
が成立しました.このとき,線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年7月9日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

鋭角三角形 $ABC$ があり,その外心を $O$ とし,$\angle BAC$ の二等分線と辺 $BC$ の交点を $D$ とすると,
$$BD=3,\quad AC=10,\quad \angle ADO=90^\circ$$
が成立しました.このとき,線分 $AD$ の長さの $\mathbf{4}$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年7月9日21:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB=AC$ を満たす鋭角三角形 $ABC$ があり,その外接円上に点 $D(\neq B)$ を,$AC\perp BD$ を満たすようにとると,
$$CD=3,\quad AD=7$$
が成立しました.このとき,線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

MrKOTAKE

公開日時: 2025年7月5日21:58 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB=AC$ の鋭角二等辺三角形がありその垂心を $H$ とします.線分 $BC$ 上に点 $D$ をとり,点 $P,Q$ を $APQD$ がこの順に一直線上に並ぶようにとると $4$ 点$ACHP$,$4$ 点 $ABHQ$ はそれぞれ共円であり,
$$BD=15,\quad CD=25,\quad PQ=8$$
が成立しました.このとき, $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

noname

公開日時: 2025年6月17日21:39 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

関数

問題文

$p$を正の実数の定数とする。定数でない多項式$f$が次を満たすとき、$f(1)$の値の最大値$M$と最小値$m$を求めよ。

条件:任意の実数$q$に対し、$|q-r|≦p$をみたす実数$r$が存在し、$f(f(q))=f(r)$を満たす。

解答形式

$M+m$の値を$1$行目に半角で入力してください。不要な小数点などはつけないでください。(例:2.0、3.1400などは×)

udonoisi

公開日時: 2025年6月15日18:18 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

連立方程式

問題文

$11$ 個の実数 $A_0 , A_1 , \cdots , A_{10} $ が $n=0 , 1 , \cdots , 9$ に対して$$\sum_{k=0}^{10}{A_kk^n}=0$$を満たします. $A_0=1$ のとき, $\sum_{k=0}^{10}{A_kk^{10}}$ の値を求めてください.
ただし, $0^0=1$とします.

解答形式

非負整数を答えてください.