数学の問題一覧

カテゴリ
以上
以下

無限ループ

lyala 自動ジャッジ 難易度:
2年前

2

問題文

A,B,Cの三人がこの順で時計回りに座って次のようなゲームをする。
(i)始め、AはCと書かれたカード、BはAと書かれたカード、Cは無地のカードとBのカードを持っている。
(ii)Aから時計回り順で、反時計回りに隣の人が持つカードから1つを等確率で選んで引く。
(iii)(ii)を繰り返して、自分の名前の書かれたカードを最初に引いた人を勝ちとする。
A,B,C,がが勝つ確率をそれぞれ、$a$,$b$,$c$とする。$a$,$b$,$c$をそれぞれ求めよ。

解答形式

半角英数字で(分子)/(分母)として既約分数で解答してください。(例)35/216
$a$を1行目、$b$を2行目、$c$を3行目に、解答してください。完答で正解とします。
8/25追記 解説を公開しました。

漸化式

u_ki ジャッジなし 難易度:
2年前

2

$以下の数列\text{{$a_n$}}の一般項を求めよ.$

$$a_1=\dfrac{1}{12},\,a_{n+1}=\dfrac{a_n}{3^{n+1}a_n+3}$$

2年前

10

問題文

図の条件の下で、$x$ で示した角の大きさを求めてください。
ただし、外側の三角形は鋭角三角形であるとします。

解答形式

$x=a$ 度です $(0<a<30)$ 。$a$ の値を半角数字で解答してください。

京大風??

nemuri_neco 自動ジャッジ 難易度:
2年前

21

問題文

$\sin 1^{\circ} $と$\tan 1^{\circ} $を大小比較せよ。

解答形式

以下の3つのうちから選び、カタカナ1文字で答えてください。

ア)$\sin 1^{\circ}<\tan 1^{\circ}$
イ)$\sin 1^{\circ}=\tan 1^{\circ}$
ウ)$\sin 1^{\circ}>\tan 1^{\circ}$

2年前

1

問題文

数列{a_n}を,
a_1=log2 , a_(n+1)=(na_n+log(2n+1)+log2)/(n+1)
によって定める。
このとき, この数列の一般項 a_n および 極限値 lim(n→∞) (a_n-logn) をそれぞれ求めよ。

記述解答(大雑把で良い)でお願いします。


問題文

$f(x)=x^2-4x+6$とする。$f(f(f(f(f(p+2)))))$が素数となるような素数$p$を全て求めよ。

解答形式

ない場合は「0」、ある場合は小さい順に半角英数字で入力してください。


問題文

定数$\,c\,$は$\,0<c\sqrt{c-1}<4\,$を満たす定数とする。
複素数列$\,\lbrace z_n \rbrace\,$は次の漸化式を満たし、初項$\,z_1\,$の実部は正である。
$$
z_{n+1}=\displaystyle \frac{1}{c}\left(z_n+\frac{1}{z_n}\right)\,\,\,\,\,(n=1,2,3,...)
$$
このとき$\,\displaystyle \lim_{ n \to \infty}|z_n-\alpha|=0\,$を満たすような複素数$\,\alpha\,$を求めよ。

解答形式

記述式(答えのみも歓迎)

Combination

Gauss 自動ジャッジ 難易度:
2年前

15

問題文

$$
\sum_{k=1}^{10} {}_{10}{\mathrm{C}}_{k}\cdot9^k\cdot k
$$

解答形式

半角数字で入力してください。

4次方程式の整数解

footballOMF 自動ジャッジ 難易度:
2年前

14

問題文

$x$の4次方程式
$$
x^{4}-5x^{3}-2(n+7)x^{2}+5nx+n^{2}=0
$$が異なる4つの整数解をもつとき、整数$n$の値を求めよ。

解答形式

半角数学で解答してください。
また、$n$の値が2つ以上ある場合
改行して小さい順に並べてください。

(例) $n= -5 , -4$ のとき
-5
-4

4次関数の性質

zyogamaya 自動ジャッジ 難易度:
3年前

2

問題文

4次関数のグラフ$C:y=f(x)$は2つの変曲点$\mathrm{P},\mathrm{Q}$をもち、1本の複接線が引けて、異なる2点$\mathrm{A}(\alpha,f(\alpha)),\mathrm{B}(\beta,f(\beta))$が接点となる。また$f(x)$の4次の係数は1である。このとき、$\displaystyle\frac{d^3}{dx^3}f(x)=0$の解を$x=\gamma$、$\mathrm{C}(\gamma,f(\gamma))$、複接線を$l_1$、直線$\mathrm{PQ}$を$l_2$、$C$上の点$\mathrm{C}$における接線を$l_3$、$l_2$と$C$の交点のうち$\mathrm{P},\mathrm{Q}$と異なる点をそれぞれ$\mathrm{R},\mathrm{S}$、$l_3$と$C$の交点のうち$\mathrm{C}$と異なる点をそれぞれ$\mathrm{D},\mathrm{E}$とおく。ただし$x$座標について、$\mathrm{A}$より$\mathrm{B}$、$\mathrm{P}$より$\mathrm{Q}$、$\mathrm{R}$より$\mathrm{S}$、$\mathrm{D}$より$\mathrm{E}$の方が大きいとする。

(1)直線$l_1,l_2,l_3$は互いに平行であることを示せ。

(2)線分長の2乗比$\mathrm{AB}^2:\mathrm{PQ}^2$を求めよ。

(3)線分長の2乗比$\mathrm{RS}^2:\mathrm{DE}^2$を求めよ。

(4)直線$l_2$と$C$で囲まれる部分の面積$S$を$\alpha,\beta$で表わせ。

解答形式

(2),(3),(4)の答えはそれぞれ一桁の自然数a,b,c,d,e,f,g,h,i,jを用いて以下のように表されます。
センター、共通テスト形式で埋め、10桁の自然数abcdefghijを答えてください。
$\mathrm{AB}^2:\mathrm{PQ}^2=a:b$
$\mathrm{RS}^2:\mathrm{DE}^2=c:d$
$S=\displaystyle\frac{e\sqrt{f}}{ghi}(\beta-\alpha)^j$

漸化式

zyogamaya 自動ジャッジ 難易度:
3年前

5

問題文

$a_1=1,na_{n+1}-2(n+2)a_n=(n+1)(n(n+2)+2^{n+1})$を満たす数列${a_n}$の一般項を求めよ。

解答形式

一般項は一桁の自然数$a,b,c,d$を用いて、$a_n=(an^2+n-b)c^{n-1}-n(n+d)$と表されるので、$abcd$を解答してください。


$(a,b,c,d)=(1,2,3,4)$→$1234$を入力

何進法の世界?【改訂版】

Gauss 自動ジャッジ 難易度:
3年前

3

問題文

$\quad$
鈍角三角形の三辺の長さが $40_{(N)},$ $399_{(N)},$ $401_{(N)}$ である.
自然数 $N$ の満たす条件を求めよ.
$$\quad$$

解答形式

半角で入力してください.
$N$ の値が一意に定まる場合は, その値を入力してください.
$N$ の値に範囲がある場合は, 最小値~最大値 という形式で入力してください.
ただし, 最大値が存在しない場合は, 最小値~ という形式で入力し, 複数の区間が存在する場合は最小値の小さいものから改行区切りで入力してください.
$\mathrm{ex})$ 解答が $N=17,~22≦N≦30,~330≦N$ の場合
  17
  22~30
  330~