数学の問題一覧

カテゴリ
以上
以下

[B]ネットワークの情報伝達

kaicho 自動ジャッジ 難易度:
2年前

11

問題文

次のようなネットワークを考える.
・情報として「0」または「1」の状態を各ノードは保持することができる.
・各ノードは他のノードに対して一方的に情報を伝達する.
・情報の伝達の際には,ある確率pで正しく状態を伝達するが,1-pの確率で状態が反転して伝達される.ここで,このpは枝によって値が異なることに注意する.
・2つのノードから情報が伝達される場合には,両方の情報を受け取った上で,保持する状態を決定する.このとき,2本のノードから受け取った情報が一致する場合には一致した状態を保持し,異なる情報を受け取った場合には1/2の確率で「0」を保持することにする(1/2の確率で「1」を保持することにする).
以下の図のネットワークにおいて始点の情報を終点まで伝達することを考え,始点と終点の状態が一致する確率xを求める.
ただし,矢印(枝)はノード間の情報伝達の方向を表し,枝の上に書かれている文字は正しく伝達される確率(上の説明のp)を表すものとする.

① a=2/3,b=3/4の場合のxを計算せよ.
② a=11/111,b=1/2の場合のxを計算せよ.
③ a=2/3,b=3/4の場合を考える.このネットワークはxy平面上の$3\times3$のサイズの格子点において,x軸正方向とy軸正方向に正しく情報が伝達される確率をそれぞれa,b,始点を原点,終点を点(2,2)としたものとみなせる.このとき,$n\times n$のサイズに拡張された(終点を(n,n)とする)ネットワークを考えると,$n\to \infty$とした時に,始点と終点の状態が一致する確率の収束値を求めよ.

解答形式

「分子/分母」(半角英数字)として既約分数を表せ.例)11/92
1行目に①,2行目に②,3行目に③を解答すること.

[D] Stability

okapin 自動ジャッジ 難易度:
2年前

8

問題文

古典制御論においてシステムの特性が線形微分方程式で表される場合、伝達関数は有理関数$$G(s)=\frac{b_ms^m+b_{m-1}s^{m-1}+…+b_1s+b_0}{a_ns^n+a_{n-1}s^{n-1}+…+a_1s+a_0}$$で与えられる。このときの分母多項式$$a_ns^n+a_{n-1}s^{n-1}+…+a_1s+a_0$$は複素数の範囲でn個の根を持ち、これらの実部が全て負であれば漸近安定、非正であればリアプノフ安定となる。

まずは分母多項式が2次の場合の安定条件を考える。

(1) $a,b$を実数とするとき、2次方程式 $x^2+ax+b=0$ の2解の実部が共に非正となるような$a,b$の条件を次の中から選べ。

  1. $a\geq0$かつ$b\geq0$
  2. $a\geq0$かつ$b\leq0$
  3. $a\leq0$かつ$b\geq0$
  4. $a\leq0$かつ$b\leq0$

次に分母多項式が4次の場合の安定条件を考える。

以下では、$p,q$を実数とし、4次方程式$$x^4+(p+q)x^3+(6-p^2-q^2)x^2+(p+q)x+1=0…(*)$$を考える。

(2) (*)の4解が全て実数解であり、かつ(実部が)全て非正となるような$p,q$の組について以下のうちどちらが正しいか。

  1. 存在する。
  2. 存在しない。

(3) (*)の4解の実部が全て非正となるような$p,q$の条件を求め、そのような$p,q$に対する$pq$の最大値を求めよ。

解答形式

(1)~(3)の解答を半角数字で改行区切りで解答してください。
ただし、(1)の解答は1から4の中から選び、(2)の解答は1,2の中から選び、(3)の解答は$pq$の最大値のみ答えること。

[A] Natural Number

okapin 自動ジャッジ 難易度:
2年前

43

問題文

$\dfrac{n^2+2020}{2n}$が自然数となるような自然数$n$の総和を求めよ。

解答形式

解答を半角数字で入力してください。

[F]Without Triangles

wa1t_sush1 自動ジャッジ 難易度:
2年前

0

問題文


問題に不備がある可能性があるため、他の問題を先に解くことをおすすめします。申し訳ございません。ただいま確認作業を行っております。(18:31)


グラフとは,頂点集合とそのうち $2$ 点を結ぶ辺の集合のことである。今回は単純グラフ(同じ頂点を結ぶ $2$ 辺が存在しない場合)のみを考える。

$2n$ 頂点で三角形が存在しない,すなわちどの頂点集合 ${a, b, c}$ を選んでもすべてが辺によって結ばれていることはないようなグラフの辺数の最大値を求めよう。

まず,各頂点 $i\;(i=1,2,\cdots, 2n)$ に $\displaystyle{\sum_{i=1}^{2n}}v_i=1$ となるように非負実数 $v_i$ を割り当てる。この制約のもとで,

$$
S:=\sum_{\substack{\{i,j\}が辺で \\ 結ばれている}} v_iv_j
$$

を最大化することを考える(編注:和は辺で結ばれている頂点 $i, j\;(1\leq i < j\leq 2n)$ すべてにわたることを意味する)。

$$
X_x:=\sum_{\substack{\{x,i\}が辺で \\ 結ばれている}} v_i
$$

とする。次のような操作をくり返す。


操作
辺によって結ばれていない $2$ 頂点 $i,j$ について,$\fbox{ア}$ ならばある正の実数 $\varepsilon$ を選んで $v_i \mapsto v_i+\varepsilon$,$v_j\mapsto v_j-\varepsilon$ という置き換えを行う。ただし $\varepsilon$ は置き換え後も $v_1+\cdots+v_{2n}=1$ かつ $v_1, \cdots, v_{2n}\geq 0$ が成り立つようにとる。


操作をくり返すと,$(X_i+\varepsilon)v_i+(X_j-\varepsilon)v_j$ と $X_iv_i+X_jv_j$ の値を比較することで $S$ は必ず $\fbox{イ}$ ことが分かる。これ以上操作を行っても $S$ の値が変化しないような状態に達したときを考えると,$\fbox{ウ}$ となるような任意の $2$ 点 $i,j$ どうしは辺で結ばれている。グラフが三角形を含まないことから,このとき

$$
S\leq \fbox{エ}
$$

である(編注:等号が成立するグラフが存在するように選ぶこと)。はじめ,すべての $v_i$ が等しかったとすると,操作を行う前は

$$
S=\frac{(辺の本数)}{\fbox{オ}}
$$

なので,(辺の本数)$\leq \fbox{カ}$ が分かる。

等号は $2n$ 頂点が $n$ 頂点の組 $2$ つに分かれていて,異なる組に属している場合のみ辺が存在するようなグラフで成り立つ。よって最大の辺数は $\fbox{カ}$ である。

$\fbox{ア}$ 〜 $\fbox{カ}$ に最もよく当てはまるものを,次の選択肢の中からそれぞれ選びなさい。

選択肢

$\fbox{ア}$ の選択肢:

1$\;v_i\leq v_j$ 2$\;v_i\geq v_j$ 3$\;X_i\geq X_j$ 4$\;X_i\geq X_j$

$\fbox{イ}$ の選択肢:

1 変化しないか増加する 2 変化しないか減少する

$\fbox{ウ}$ の選択肢:

1$\;v_i>0, v_j>0$ 2$\;v_i=0, v_j=0$ 3$\;X_i>0, X_j>0$ 4$\;X_i=0, X_j=0$

$\fbox{エ}$ の選択肢:

1$\;n^2$ 2$\;\cfrac{n^2}{2}$ 3$\;\cfrac{n^2}{4}$ 4$\;1$ 5$\;\cfrac{1}{2}$ 6$\;\cfrac{1}{4}$

$\fbox{オ}$ の選択肢:

1$\;n^2$ 2$\;2n^2$ 3$\;4n^2$ 4$\;1$ 5$\;4$

$\fbox{カ}$ の選択肢:

1$\;n^2$ 2$\;\cfrac{n^2}{2}$ 3$\;2n^2$ 4$\;n^4$

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{カ}$ には,半角数字 1 - 6 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{カ}$ に当てはまるものを改行区切りで入力してください。

[A] Times

hinu 自動ジャッジ 難易度:
2年前

10

A君は $38\times 57$ を次のように計算した。

$$
\newcommand{\nc}{\newcommand}
\nc{\wake}[1]{\begin{cases} #1 \end{cases}}
\nc{\f}[2]{\dfrac{#1}{#2}}
\nc{\s}[1]{\{#1\}}
\nc{\pmat}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\nc{\lr}[1]{\left( #1 \right)}
\nc{\com}[2]{{}_{#1}{\rm C}_{#2} \right)}
\nc{\bar}[1]{{\overline{#1}}}
\nc{\bb}[1]{{\mathbb {#1}}}
\nc{\rmn}[1]{{\rm #1}}
\nc{\q}{\quad}
\nc{\x}{\times}
\nc{\a}{\alpha}
\nc{\b}{\beta}
\nc{\th}{\theta}
\nc{\Q}[1]{\fbox{#1}}
\nc{\qq}{&\q\q\q\q\q&}\begin{eqnarray}38\qq 57 \qq \rm x\\19\qq 114\qq \rm o\\9\qq 228\qq \rm o\\4\qq 456\qq \rm x\\2\qq 912\qq \rm x\\1\qq \underline{1824}\qq \rm o\\ \qq 2166\qq \rm \\\end{eqnarray}
$$

A君の計算方法に基づいて以下の $43\x 71$ の計算の空欄を埋めよ。

$$
\nc{\qq}{&\q\q\q\q\q&}\begin{eqnarray}43\qq 71 \qq \rm o\\\Q{ア}\qq \Q{オ}\qq \rm \Q{ケ}\\\Q{イ}\qq \Q{カ}\qq \rm \Q{コ}\\\Q{ウ}\qq \Q{キ}\qq \rm \Q{サ}\\\Q{エ}\qq \Q{ク}\qq \rm \Q{シ}\\1\qq \underline{2272}\qq \rm o\\ \qq 3053\qq \rm \\\end{eqnarray}
$$

解答を改行区切りで入力せよ。ただし $\Q{ア}$ から $\Q{ク}$ には 1 から 9999 までの整数が入り、 $\Q{ケ}$ から $\Q{シ}$ には o または x が入る。

[B] Ising Othello

ofukufukufuku 自動ジャッジ 難易度:
2年前

6

問題文

片面が黒色、もう片面が白色のオセロが一直線に$N$個並んでいる。1秒経過するごとに,$N$個のオセロから無作為に1つ選び裏返す。

時刻$t(\geq0)$における黒色のオセロの個数を$A_N(t)$で表すとする。$A_4(0)=2$のとき$A_4(2)=2$となる条件付き確率を$P_1$,$A_8(0)=2$のとき$A_8(3)=3$となる条件付き確率を$P_2$とすると,
$$
P_1=\frac{\fbox{ア}}{\fbox{イ}},~~~~P_2=\frac{\fbox{ウ}}{\fbox{エ}}
$$である.

時刻$t(\geq0)$における$A_N(t)$の期待値を$\mu_N(t)$とすると,以下の漸化式が成立する。
$$
\mu_N(t+1)=\left(\fbox{オ}-\frac{\fbox{カ}}{\fbox{キ}}\right)\mu_N(t)+\fbox{ク}
$$これより,
$$
\lim_{t\to\infty}\mu_{50}(t)=\fbox{ケ}
$$となる。

解答形式

空欄 $\fbox{ア}$〜$\fbox{ク}$には,自然数あるいは N が入る。それぞれに当てはまる数字もしくはアルファベットを改行区切りで入力せよ。なお,分数はこれ以上約分できない形にすること。

[D] Along the Edges

hinu 自動ジャッジ 難易度:
2年前

7

問題文

$$
\newcommand{\nc}{\newcommand}
\nc{\wake}[1]{\begin{cases} #1 \end{cases}}
\nc{\f}[2]{\dfrac{#1}{#2}}
\nc{\s}[1]{\{#1\}}
\nc{\pmat}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\nc{\lr}[1]{\left( #1 \right)}
\nc{\com}[2]{{}_{#1}{\rm C}_{#2} \right)}
\nc{\bar}[1]{{\overline{#1}}}
\nc{\bb}[1]{{\mathbb {#1}}}
\nc{\rmn}[1]{{\rm #1}}
\nc{\q}{\quad}
\nc{\x}{\times}
\nc{\a}{\alpha}
\nc{\b}{\beta}
\nc{\th}{\theta}
\nc{\Q}[1]{\fbox{#1}}
$$

下のように $\rm AB=1\ ,\ BC=2$ の長方形 $\rm ABCD$ がある。点 $\rm P$ は $t=0$ で点 $\rm A$ におり、 $1$ 秒間に $1$ の速度で辺の上を進む。点 $\rm P$ が 点 $\rm A,B,C,D$ のいずれかにいるとき確率 $p$ で辺 $\rm AB$ に平行な向きに、 $1-p$ の確率で辺 $\rm AD$ に平行な向きに向きを変え、それ以外の場所で向きを変えることはないものとする。

$p=\dfrac56$ とするとき点 $\rm P$ が $2n$ 秒後 $(n=0,1,2,\cdots)$ に点 $\rm A$ にいる確率を求めたい。

点 $\rm P$ が $2n$ 秒後に点 $\rm A,D$ にある確率を $A_n,D_n$ とおく。このとき $X_n=A_n+D_n$ とおくと漸化式
$$
X_{n+1}=\f{\Q{ア}}{\Q{イ}}X_n +\f{\Q{ウ}}{\Q{エ}}
$$
が成り立つ。また $Y_n=A_n-D_n$ とおくと漸化式
$$
Y_{n+2}-\f{\Q{オ}}{\Q{カ}}Y_{n+1}+\f{\Q{キ}}{\Q{ク}}Y_n=0
$$
が成り立つ。これらを初期条件 $X_0=\Q ケ\ ,Y_0=\Q{コ}\ ,Y_1=\f{\Q{サ}}{\Q{シ}}$ のもとで解くことで
$$
A_n=\f{\Q ス}{\Q セ}+\f{\Q ソ}{\Q タ}\lr{\f{\Q チ}{\Q ツ}}^n-\lr{\f{\Q テ}{\Q ト}}^n+\f{\Q ナ}{\Q ニ}\lr{\f{\Q ヌ}{\Q ネ}}^n
$$
を得る。なお ${\f{\Q チ}{\Q ツ}}<{\f{\Q ヌ}{\Q ネ}}$ である。

解答形式

上の空欄を埋めよ。解答は半角数字・改行区切りで入力すること。ただし $\Q ア$ から $\Q ネ$ にはそれぞれ 1 から 999 までの整数が入り、分数は既約分数の形で表してある。

[B] Dots on the Ball

halphy 自動ジャッジ 難易度:
2年前

21

問題文

$r$ を正の整数とする。$xyz$ 空間において,原点を中心とする半径 $\sqrt{r}$ の球面を $S_r$ で表すとき,次の問いに答えなさい。

  1. $S_r$ が格子点を含まないような最小の $r$ を求めなさい。
  2. $S_r$ が格子点を含まず,$r$ が $8$ の倍数であるような最小の $r$ を求めなさい。

※点 $(x,y,z)$ が格子点であるとは,$x,y,z$ がすべて整数であることをいう。

解答形式

改行区切りで,1行目に 1. の答えを,2行目に 2. の答えを入力してください。

[A] よくある級数

ofukufukufuku 自動ジャッジ 難易度:
2年前

8

問題文

$y=\tan x \; \left(-\cfrac{\pi}{2}<x<\cfrac{\pi}{2}\right)$ の逆関数を $x=f(y)$ とする.このとき,
$$
S=\sum_{n=0}^\infty f\left(\frac{1}{n^2+n+1}\right)
$$を求めよ.答えは,整数ア・イを用いて
$$
S=\frac{\fbox{ア}}{\fbox{イ}}\pi
$$と既約分数の形でかける.

解答形式

アとイをそれぞれ1行目、2行目に半角数字で入力せよ.

[C] 奇妙な数列

ofukufukufuku 自動ジャッジ 難易度:
2年前

10

問題文

以下のような数列 $\{a_n\}$ を考える。
$$
a_n=1+\sum_{m=1}^{2^n}{\rm floor}\left[\sqrt[n]{\frac{n}{\displaystyle{\sum_{k=1}^m}\; {\rm floor}\left(\cos^2\cfrac{(k-1)!+1}{k}\pi\right)}}\right]
$$なお、${\rm floor}(x)$ は $x$ 以下の最大の整数を返す関数とする。このとき、$a_{20}$ を求めよ。

ただし、必要であれば以下の定理および不等式を用いても良い。

  1. $n$ が素数のとき
    $$\quad(n-1)!\equiv-1 \pmod n$$
  2. $n\geq 1$ のとき
    $$1\leq\sqrt[n]{n}<2$$

解答形式

半角数字で入力してください.

[E] modじゃんけん

hinu 自動ジャッジ 難易度:
2年前

10

問題文

$n\;(\geq 2)$ を自然数とするとき,以下の試行を行うことを考える。


試行

  • $n$ 人が $0,1,2$ のいずれかひとつの数を無作為に選ぶ。
  • 人 $i\; (i=1,2,\cdots, n)$ が選んだ数を $a_i$ とする。各人 $i$ に対して,
    $$
    a_i\equiv\sum_{j=1}^n a_j\; ({\rm mod} \; 3)
    $$ならば人 $i$ は生存し,そうでないなら脱落する。この試行をmodじゃんけんと呼ぶことにする。

$n$ 人がmodじゃんけんを $1$ 回行い,全員が生存するか全員が脱落するとき,modじゃんけんの結果はあいこになると定義する。

$n$ 人がmodじゃんけんを $1$ 回行ってあいこになる確率を $p_n$ とするとき

$$
p_2=\frac{\fbox{ア}}{\fbox{イ}},\; p_3=\frac{\fbox{ウ}}{\fbox{エ}},\; p_4=\frac{\fbox{オ}}{\fbox{カキ}}
$$

である。$n$ を $\fbox{ク}$ で割った余りが $\fbox{ケ}$ であるとき

$$
p_n=\frac{\fbox{コ}^{n}+\fbox{サ}}{\fbox{シ}^n}
$$

であり,そうでないときには

$$
p_n=\frac{\fbox{コ}^{n}+\fbox{ス}}{\fbox{シ}^n}
$$

である。また,

$$
\lim_{n\to\infty} p_n=\fbox{セ}
$$

が成り立つ。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{セ}$ には,半角数字 0 - 9 または記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{セ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

求長問題2

Kinmokusei 自動ジャッジ 難易度:
2年前

6

問題文

直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。
$BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。

解答形式

半角数字で解答してください。