数学の問題一覧

カテゴリ
以上
以下

ABC(D)

atawaru 自動ジャッジ 難易度:
3月前

42

問題文

ある正の実数 $k$ があり,$x$ についての $4$ 次多項式 $f(x)$ を

$$f(x)=x^4+4kx^3+3kx^2+2kx+k$$

と定めます.方程式 $f(x)=0$ は相異なる $4$ 個の複素数解を持ったのでそれらを $\alpha,\beta,\gamma,\delta$ とし,さらに $x$ についての $4$ 次多項式 $g(x)$ を,$4$ 次の項の係数が $1$ であり,かつ方程式 $g(x)=0$ が $4$ 個の複素数解 $\dfrac{1}{\alpha},\dfrac{1}{\beta},\dfrac{1}{\gamma},\dfrac{1}{\delta}$ を持つように定めます.
$g(6)=2025$ であるとき,$k$ の値を求めてください.

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

ABC(F)

atawaru 自動ジャッジ 難易度:
3月前

48

問題文

$2$ 以上の整数 $n$ のうち,次の条件を満たすものはいくつありますか?

  • $n$ の $k$ 個の正の約数を小さい順に $d_1,d_2,\dots,d_k$ としたとき,任意の $1$ 以上 $k-1$ 以下の整数 $i$ について $d_{i+1}-d_i\leq40$ が成立する.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

ABC(E)

atawaru 自動ジャッジ 難易度:
3月前

56

問題文

以下の条件をすべて満たすような正整数 $n$ はいくつありますか?

  • $n$ は $3$ の倍数である.

  • $2$ 進法で表記した $n$ はちょうど $15$ 桁の数で,そのうち $5$ つの桁の数字が $0$ である.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

ABC(B)

atawaru 自動ジャッジ 難易度:
3月前

55

問題文

$13$ の倍数である $9$ 桁の正整数であって,上 $3$ 桁の整数も上 $6$ 桁の整数も $13$ の倍数であるようなものはいくつありますか?

解答形式

答えは非負整数値となるので,それを半角で解答してください.

ABC(H)

atawaru 自動ジャッジ 難易度:
3月前

24

問題文

$n$ を $3$ 以上の奇数とします.いま,円に内接する凸 $n$ 角形 $P_1P_2\dots P_n$ があり,$k=1,2,\dots,n$ について角 $P_k$ の大きさを ${a_k}^{\circ}$ としたところ,

$$\sum_{k=1}^{\frac{n-1}{2}}a_{2k}=7777$$

が成立しました.このとき,度数法での角 $P_1P_2P_n$ の大きさとして考えられる値の総和を解答してください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

ABC(G)

atawaru 自動ジャッジ 難易度:
3月前

36

問題文

$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式

$$x^{999}+x^{998}+\dots+x+1=0$$

の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,

$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$

の値を求めてください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

整数問題

smasher 自動ジャッジ 難易度:
3月前

5

問題文

$x,y$を整数、$p$を素数とする。
$x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。

解答形式

$x+y+p$の値としてありうる値の総和を半角数字で入力してください。

問題11

Mid_math28 自動ジャッジ 難易度:
3月前

83

問題文

$a,b$ を $a \le b$ を満たす正の整数とします。
$2025\times 2026$ のマス目があります。ここに $a\times b$ のタイルを何枚か置くことでマス目を隙間なく敷き詰めることが出来ました。
このような $(a,b)$ の組はいくつありますか?

追記 タイルは回転してかまいません。

解答形式

半角数字で解答してください

問題5

Mid_math28 自動ジャッジ 難易度:
3月前

44

問題文

$2025 \times 2025$ のマス目があり、右から $m$ 列目、上から $n$ 行目のマスを $(m,n)$ と表します。
いま、$(1,1)$ に東くんがおり、辺を共有するマスを通って最短距離で $(2025,2025)$ まで移動します。
このとき、以下を満たすような移動方法は $M$ 通りあります。$M$ は $2$ で何回割り切れますか?

$$i と j がともに偶数であるようなマス (i,j) を一つも通らない$$

解答形式

半角数字で解答してください

問題10

Mid_math28 自動ジャッジ 難易度:
3月前

21

問題文

$AB=10,BC=21,CA=17$ をみたす三角形 $ABC$ の内心を $I$ とします。辺 $AB$ 上に点 $D$ をとると、直線 $DI$ が三角形 $ABC$ の面積を $2$ 等分し、さらに辺 $BC$ と交わりました。このときの線分 $AD$ の長さを求めてください。

解答形式

$AD$ の長さは正整数$a,b$を用いて $\sqrt{a}-b$ と表されるので、$a+b$ を解答してください

問題7

Mid_math28 自動ジャッジ 難易度:
3月前

31

問題文

相異なる $1$ 以上 $9$ 以下の整数の組 ($A,E,M,S,T,U,Y$) が以下の覆面算を満たしています

$$\begin{array}{rr}
& MATU \\
+ & YAMA \\
\hline
& EAST
\end{array}$$
このとき、$EAST$ としてありうる値を見つけてください。

解答形式

$EAST$ としてありうる値が$3$つ存在するので、それらの総和を解答してください。

問題3

Mid_math28 自動ジャッジ 難易度:
3月前

43

問題文

以下のように点 $O$ を中心とする円周上に三角形 $ABC$ が内接しています。この円の内部に点 $D$ を取ると、$AB=BC=AO=4,\angle BAD=90°$ が成り立ち、さらに三角形 $AOD$ の面積は $3\sqrt{3}$ でした。このときの線分 $CD$ の長さの $2$ 乗を求めてください。

解答形式

解答は正の整数値になるので、その値を半角数字で解答してください