数学の問題一覧

カテゴリ
以上
以下

sulippa

公開日時: 2025年6月6日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

整数辺の直角三角形の中で、ある特別な性質を持つものを「閉じた三角形」と呼ぶ。
その定義は次の通りである:
三角形の3つの頂点から、最も近い内接円の接点までの3つの線分を考える。その3つの線分の長さを3辺として、新たな非退化三角形を作ることができる。
この条件を満たすもののうち、斜辺が300未満であるもの全てを考え、それらの周長の総和を求めよ。

解答形式

例)ひらがなで入力してください。

Tehom

公開日時: 2025年6月4日0:11 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の式の値は互いに素な正の整数 $p,q$ を用いて $\displaystyle \frac{q}{p}$ と表せるので,$p+q$ の値を解答してください.
$$\displaystyle \sum_{n=1}^{10} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(n-1)!(i+j)!(2n-i-j)!}{i!j!(2n)!(n-i)!(n-j)!}$$

解答形式

半角数字で解答してください.

taku1729

公開日時: 2025年6月3日12:49 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

△ABCの内心をI、△ABCの外接円とAIの交点をL(≠A)、AB上にD(≠A,B)をとったとき以下が成立しました。$$LI=LD,AI=4,AD=5,BL=8$$DBの長さを解答してください。

解答形式

半角数字で入力してください。

sulippa

公開日時: 2025年5月30日21:30 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


✕✕

sulippa

公開日時: 2025年5月30日21:30 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題

$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。
$P(0)=6$
$P(1)=4$
のとき、$P(4)$の値を求めよ。

解答形式

半角でスペースなし

sulippa

公開日時: 2025年5月30日21:30 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

3次の多項式 $P(x)$ は整数係数を持ち、すべての係数が整数であるとする。
0 でないある整数 $M$ について、$P(x)$ は以下の条件を満たす。
$kP(k) = M (k=1, 2, 3, 4)$
このとき、M が取りうる最小の正の整数値を求めよ。

解答形式

半角でスペースなし

suth

公開日時: 2025年5月30日1:20 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ.
(ただしpは素数とする)

(半角の自然数が答え)

tomorunn

公開日時: 2025年5月29日22:12 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

太郎君は遅刻魔で、よく遅刻をする。
それを見かねた先生は、
・3日連続で遅刻したら特別指導
・10日間の間に6回以上遅刻をしたら特別指導
というルールを設けた。このとき、10日間で太郎君が特別指導を受けないよう登校する方法は合計何通りあるか。

解答形式

例)半角数字で入力してください。

tomorunn

公開日時: 2025年5月29日22:11 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

モニターに0が表示されている。ここには3つのボタンがあり、
・ボタン$A$を押すとモニターの数字が1増える。
・ボタン$B$を押すとモニターの数字が2増える。
・ボタン$C$を押すとモニターの数字が3増える。
ボタン$A~C$をそれぞれ任意の回数押したとき、
最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。

解答形式

例)半角数字で入力してください。

Shota_1110

公開日時: 2025年5月29日21:34 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$ $ 次の等式をみたす正整数の組 $(x, y, z)$ の個数を求めて下さい.
$$x^3 + 2x^2y + x^2z + xy^2 + xyz = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$$

解答形式

半角英数にし,答えとなる非負整数値を入力し解答して下さい.

sulippa

公開日時: 2025年5月29日0:14 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

$n ≧2$を整数、$p $を素数とする。正の整数 $x$ についての方程式
$x^n - (x-p)^n = p^n$
を考える。
$p$ が奇素数であり、$p$が $x$ を割り切らないとき、この方程式は解を持たないことを示せ。

解答形式

何の定理を使用したかを明確にされた上で、数式を出来るだけ省いてもらった形の簡単な証明で構いません

suth

公開日時: 2025年5月28日14:58 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


tan1°は有理数か

はいorいいえで答えてね!

(解答が間違っていました。すみませんでした。修正しました.)