数学の問題一覧

カテゴリ
以上
以下

seven_sevens

公開日時: 2023年11月7日20:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 整数問題

問題文

$a^n+b^m=2024(a>b>0,n>1,m>1)$である自然数の組$(a,b,n,m)$をすべて求めよ。

解答形式

解答と解答を改行区切りで入力してください。


2023/11/8追記

(a,b,n,m)
という形で解答をしてください。
複数ある場合は前述の通り改行区切りで入力してください。
また、aが小さい順に、aが同じ場合はbが小さい順に解答してください。


2023/11/24追記

こちらのミスで自動判定の解答が指定した回答形式とあっていませんでした。すみませんでした。

tb_lb

公開日時: 2023年11月5日21:25 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 面積

【補助線主体の図形問題 #122】
 今週の図形問題です。今回は面積関係を問う問題です。想定解の計算量は大したことないのですが、いくぶん面倒かもしれません。じわじわと確定する面積を探しつつお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

natsuneko

公開日時: 2023年11月3日20:09 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数

問題文

正整数 $n$ に対して, $n^i \equiv 1 \ (\textrm{mod} \ 25 )$ を満たす最小の正整数 $i$ を $f(n)$ とします. (ただし, このような $i$ が存在しない場合は, $f(n) = 0$ とします.) このとき, $1 \leq n \leq 10000$ の範囲で $f(n)$ が最大値をとるような $n$ の総積を $1000$ で割った余りを解答して下さい.

解答形式

非負整数値を解答して下さい.

Butterflv

公開日時: 2023年11月2日23:26 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

任意の二次関数$\ f\ $についてある$\ \theta \ (0\le \theta \le 2\pi)$があって,$\ xy$座標平面上で$\ y=f(x)\ $を$\ \theta \ $反時計回りに回転させたものを考える.$\ $これがある関数$\ g(x)\ $で$\ y=g(x)\ $と表せるときの$\ \theta\ $としてありうるものの総和を$\ S\ $とするとき$\ S\ $を超えない最大の整数を回答して下さい.

解答形式

整数で回答してください.

rankturnip

公開日時: 2023年11月2日22:40 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

数列 $a_n$ は,$a_1=\sqrt{2-2\cos{\left(\dfrac{882}{5}\right)^\circ}},a_2=1-2\cos{\left(\dfrac{882}{5}\right)^\circ}$ として,以下の漸化式を満たします.
$$a_{n+1}=\dfrac{(a_n)^2-1}{a_{n-1}}(n=2,3,4,\cdots)$$
 このとき,$\lfloor (a_{49})^2\rfloor$ の値を求めてください.ただし,$-0.998027<\cos{\left(\dfrac{882}{5}\right)^\circ}<-0.998026$を用いても構いません.

解答形式

$\lfloor (a_{49})^2\rfloor$ を解答してください.$\lfloor x\rfloor$ は$x$を超えない最大の整数です.

nmoon

公開日時: 2023年11月2日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正五角形 $ABCDE$ があり,その中心を $O$ とします.線分 $BO$ 上に点 $F$ を,線分 $EO$ 上に点 $G$ をとり,三角形 $AFG$ の外接円と線分 $AB,AE$ との交点をそれぞれ点 $P,Q$ とすると,以下が成立しました.

$$\angle{FAG}=54^{\circ} , PB=28 , QE = 30$$

このとき,正五角形 $ABCDE$ の一辺の長さを求めてください.
ただし,正多角形の中心とはその正多角形の外接円の中心のことを表すとします.

解答形式

答えは正整数 $a,b,c$ を用いて $a+\sqrt{b - \sqrt{c}}$ と表されるので,$a+b+c$ を解答してください.

nmoon

公開日時: 2023年11月2日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$-1\leq k \leq 1$ を満たす実数 $k$ において,$10k + 11\sqrt{1-k^2}$ の最大値を $2$ 乗したものを求めてください.

解答形式

正整数で答えて下さい.

nmoon

公開日時: 2023年11月2日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正整数 $a , b$ の最大公約数を $g(\not=1)$,最小公倍数を $l$ としたとき,以下が成立しました.

$$\dfrac{l - 1}{g - 1} = 100$$

このときの $(a , b)$ の組としてあり得るものを全て求め,$a + b$ の総和を求めてください.

解答形式

正整数で答えて下さい.

nmoon

公開日時: 2023年11月2日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$11 \times 11$ の長方形のマスのうちいくつかを次の条件を満たしながら黒色に塗っていきます.

  • 黒色に塗られた任意の $2$ つのマスは辺を共有しない(頂点は共有しても良い).

このとき,黒色に塗ることができるマスの数は最大でいくつですか.

解答形式

正整数で答えて下さい.

natsuneko

公開日時: 2023年11月2日18:10 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数

問題文

正整数 $N$ に対し, $f(N)$ を以下のように定めます.
・ $N$ の正の約数全てに対し, それが $2$ で割り切れる最大の回数の総和

例えば, $f(6) = 2, f(4) = 3$ となります. このとき, $f(M) = 40$ となる最小の正整数 $M$ を解答して下さい.

解答形式

正整数を解答して下さい.

natsuneko

公開日時: 2023年10月30日14:07 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

代数

問題文

実数 $x,y$ が $x^2+y^2 = 1$ を満たしています. このとき, $\cfrac{7xy-5x-5y+22}{x^2-10x+25}$ のとり得る最大値を $M$, 最小値を $N$ としたときの $NM$ の値を求めてください. ただし, 答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるので, $a+b$ の値を解答して下さい.

解答形式

非負整数値を解答して下さい.

tb_lb

公開日時: 2023年10月29日23:05 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #121】
 今週の図形問題です。補助線が活躍するのはいつも通りで、さらに、手慣れた方なら暗算で解けてしまうかもしれません。ぜひ幅広く挑戦してもらえたら、と思います。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。