数学の問題一覧

カテゴリ
以上
以下

第7問

sulippa 採点者ジャッジ 難易度:
3日前

0

設問7
数列 ${a_n}$ が $a_1 = 0, a_2 = 1$ および漸化式
$$ (n+1)a_{n+2} - (3n+2)a_{n+1} + 2na_n = 0 \quad (n \ge 1) $$
を満たす。一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

第9問

sulippa 採点者ジャッジ 難易度:
3日前

1

設問9

数列 ${a_n}$ ($a_n \in {0,1,2,3,4}$) が $a_1=1, a_2=1$ および漸化式 $a_{n+2} \equiv a_{n+1} + a_n \pmod{5}$ ($n \ge 1$) を満たすとする。$a_{2025}$ の値を求めよ。

解答形式

例)ひらがなで入力してください。

第10問

sulippa 採点者ジャッジ 難易度:
3日前

1

問題文

数列 ${a_n}$ ($n \ge 0$) が、初期値 $a_0 = 3$ および以下の漸化式で定義されるとする。
$$a_{n+1} = a_n^2 - 2 \quad (n \ge 0)$$
この数列の一般項 $a_n$ を求めよ。
ただし、黄金比を$Φ$とする。


解答形式

例)ひらがなで入力してください。

第8問

sulippa 採点者ジャッジ 難易度:
3日前

2

設問8

正の数からなる数列 ${a_n}$ が $a_1 > 0$ および漸化式 $a_{n+1} = a_n + \frac{1}{a_n^2}$ ($n \ge 1$) を満たすとき、極限値 $\lim_{n \to \infty} \frac{a_n}{\sqrt[3]{3n}}$ を求めよ。


解答形式

幾何

Ryomanic 採点者ジャッジ 難易度:
5日前

0

問題文

円O上に点A,B,C,Dをこの順に一致しないように配置し、AC,BDの交点をEとする。点Dにおける円O上の接線と△CEDの外接円上の接線が一致するようなA,B,C,Dの配置は存在するか。

解答形式

題意を満たす配置が存在する場合は必要十分条件を、存在しない場合はそれを示してください。

対数の性質

skimer 採点者ジャッジ 難易度:
5日前

1

問題文

$\log_2 25$ の小数部分をbとする
このとき、$\log_{10}2$ をbを用いて表せ

解答形式

答えのみ

不等式

skimer 採点者ジャッジ 難易度:
5日前

1

問題文

$a>0,b>0$ のとき、
$a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください

ルジャンドルの定理(改)

sulippa 自動ジャッジ 難易度:
5日前

0

問題文

$m!$ を正整数 $m$ の階乗とする。$n \ge 2$ なる整数 $n$ に対し、$m!$ の $n$ 進法表記における末尾の連続する $0$ の個数を $Z_n(m!)$ とする。
正整数 $k$ に対し、$Z_n(m!) = k$ を満たす最小の正整数 $m$ を $M(n, k)$ と定義する(存在しない場合は $M(n, k) = \infty$)。

素数 $p$ について、$M(p, k_1) = p^2$ を満たす正の整数 $k_1$ と、$M(p^2, k_2) = p^3$ を満たす正の整数 $k_2$ を考える。
$k_1 + k_2 = 21$ となる素数 $p$ の値をすべて求めよ。

解答形式

半角で1スペースおきにお願いします
最初は空けなくていいです

ルジャンドルの定理

sulippa 自動ジャッジ 難易度:
6日前

3

問題文

$n$ を $2$ 以上の整数、$k$ を正の整数する。
$m$ の階乗を $m!$ とし、$m!$ を $n$ 進法で表したとき、末尾に連続して並ぶ $0$ の個数を $Z_n(m!)$ とする。
$Z_n(m!) = k$ を満たす最小の正の整数 $m$ を $M(n, k)$ とする。(そのような $m$ が存在しない場合、$M(n, k) = \infty$ とする。)
問:
$p$ を $5$ 以上の素数とする。
$A_p = M(p, p-1)$ と定義する。
このとき、
$$M(A_p, k_0) = p^3 - p^2$$
を満たす正の整数 $k_0$ が一意に存在するような、最小の素数 $p$ を求めよ。
また、対応する $k_0$ の値を答えよ。

解答形式

$p,k_0$をこの順に半角1スペースおきに書いてください。

素数と整数

skimer 採点者ジャッジ 難易度:
6日前

2

問題文

$n\;を自然数とする$
$n\;が15の倍数でないとき、n^{4}+14\; は素数でないことを示せ$

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙にでも書いて、twitterのDMに送ってください

三角形の面積の最小値

sulippa 自動ジャッジ 難易度:
6日前

0

問題文

△ABCで、内接円の半径を$r$とする。
$tanA=1/k,a=4k,r=k$
のとき、△ABCの面積の最小値を求めよ。

解答形式

半角数字の既約分数で1行目に分子、2行目に分母を書いてください、整数の場合も分母を1としてください。

再掲No.2

MrKOTAKE 自動ジャッジ 難易度:
6日前

1

問題文

三角形 $ABC$ の線分 $BC$ の中点を $M$ とし,線分 $AB$ 上に点 $P$ をおくと $AP=2,AM=5,CP=4, \angle ACP= \angle BPM$ であったので,線分 $BC$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.