三角柱 $ABC-DEF$ があり,いま点 $P$ は頂点 $A$ にいます.点 $P$ が隣り合う頂点に移動する操作を $12$ 回繰り返して点 $A$ に戻るように移動する方法すべてに対して,上下に移動する回数の総和を求めてください.
ただし上下に移動するとは,頂点 $A,B,C$ のいずれから頂点 $D,E,F$ のいずれかに移動すること,またその逆を意味します.
半角数字で解答してください.
図のような展開図を組み立てできる立体の体積は何㎤ですか。
ただし、⚪︎の三角形は直角二等辺三角形、×の三角形は正三角形、⬜︎の四角形はひし形で、青の角の大きさは60°、赤の角の大きさは120°です。また、⚪︎の三角形の面積は36㎠です。
半角数字で入力してください。
例)10
100をe進数で表記すると何桁になるか。(整数部分のみ)
半角数字+「桁」という文字(例:1桁)
3,1,4,1,5,9,2,?
この数列で、?に入る数字は何?
半角の数字1桁を入力してください。
$$
\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}},\frac{1}{\sqrt{40000}},\frac{1}{|{500}{i}^2|}\\の小さい方から順に並べて下さい。
$$
$$
(1)\frac{1}{|{500}{i}^2|}<\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}
<\frac{1}{\sqrt{40000}}
$$
$$
(2)\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}<\frac{1}{|{500}{i}^2|}<\frac{1}{\sqrt{40000}}
$$
$$
(3)\frac{1}{\sqrt{40000}}<\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}<\frac{1}{|{500}{i}^2|}
$$
$$
(4)\frac{1}{\sqrt{40000}}<<\frac{1}{|{500}{i}^2|}<\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}
$$