数学の問題一覧

カテゴリ
以上
以下

hinu

公開日時: 2020年6月10日14:28 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

定積分

$$
\int_0^1 (\sqrt[7]{1-x^{11}}-\sqrt[11]{1-x^{7}})dx
$$

を求めよ。

解答形式

値は半角数字で記述せよ。無理数などを用いたい場合は必要ならばTeX記法により記述せよ。

Kinmokusei

公開日時: 2020年6月10日14:17 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

同じ色の線分は同じ長さです。
∠Xの大きさを求めてください。
青と黄、赤と黄緑の線分が重なって一部見づらくなっています。m(__)m

解答形式

度数法で、0~360の数字を半角で入力してください。
例:∠X=30° → 30
「度」や"°"をつけずに回答してください。

BlueHawaii

公開日時: 2020年6月10日13:54 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

$a=e^{2AX},c=e^{2CX}$(Xは正の定数,A,Cは実数)とする.
$f(x)=-a\log_e(x+c)+X$とする.$y=f(x)$の$y$切片を点P,
$y=f(x)$と点$(0,X)$で接する接線$l$と$y$軸とが成す角を
$\theta\;(\theta\mbox{は}0<\theta<\dfrac{\pi}{2}\mbox{を満たす実数})$,$y=f(x)$の$x$切片を点Qとする.
$\tan\dfrac{\theta}{2}$をネイピア数$e$を用いて表せ.
また,点Qの$x$座標が正の無限大に大きくなるとき,$\tan\dfrac{\theta}{2}$の値の極限値を求めよ.

解答形式

記述式解答を求む.(直感で答えが出る可能性があるので)

sapphire15

公開日時: 2020年6月10日7:06 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

相異なる正の整数$a, b,c, d,k$が
$$a^2 + b^2 = c^2 + d^2 = k$$
を満たすものとします。$k$の最小値を求めてください。

解答形式

半角数字で回答してください。

備考

  • 6/10 14:26 問題文を「非負整数」→「正の整数」に修正しました。

okapin

公開日時: 2020年6月9日20:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n$を2以上の整数とし, $f(x)=\sqrt[n]{x^n+nx^{n-1}} (x\geq0)$を考える。

$(1)$ $x$を正の整数とするとき, $f(x)$の値が整数でないことを示せ。

$(2)$ $y=f(x)$, $x$軸, $x=m-1$ ($m$は正の整数) で囲まれた領域内(境界線上も含む)の格子点の数を求めよ。

解答形式

$(2)$ で $m=100$ のときの答えを半角数字で入力してください。

hinu

公開日時: 2020年6月9日17:49 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題

自然数の組に対する二項演算 $\small \bigcirc$ および $ \triangle$ は以下の条件を満たすとする。

$$
\newcommand{\o}{\ \small\bigcirc \ \normalsize }
\newcommand{\tr}{\ \triangle \ }
a\tr b=\underbrace{(a\o (a\o (\cdots \o(a\o a))))}_{a\ が\ b\ 個}
$$

二項演算 $\tr$ が可換性

$$
a\tr b=b\tr a
$$

を満たすとき、次の問に答えよ

(1)  $1\o 1=2$ を示せ。

(2)  演算$\o$が結合法則

$$
a\o(b\o c)=(a\o b)\o c
$$

を満たすとき $2020\tr 2019$ の値を求めよ。

解答形式

(2)の値を半角数字で記述せよ。

okapin

公開日時: 2020年6月9日13:53 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

中心$O$, 直径$AB$とする円の$A,B$以外の円周上の点$C$を取り, $\angle BAC=\theta \ (0^\circ<\theta <90^\circ)$ とする。
このとき, 線分$OD$が線分$AC$によって二等分されるような点$D$が円周上に取れるような$\theta$の取りうる範囲を求めよ。

解答形式

求める$\theta$の範囲は$a^\circ<\theta\leq b^\circ$となります。1行目に$a$, 2行目に$b$を半角数字で入力してください。

yuuki_sakimori

公開日時: 2020年6月9日1:18 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

自然数$a,b,c,d$は
$$
a\neq b
$$ $$
(a+b)(a-b)+(ad-bc)=0
$$ $$
bc-a^2=1
$$
を満たしています.このとき
$$
\frac{c-d}{a-b}
$$
の取り得る値を全て求めてください.

解答形式

半角数字で解答してください.複数ある場合は小さい順に一行ずつ入力してください.
Ex:答えが「1」と「-$\frac{3}{89}$」と「100」のとき
-3/89
1
100
と解答してください.

halphy

公開日時: 2020年6月8日13:17 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

組合せ 数列 級数

問題文

からなる $2$ 次元的な植物を考えます。植物は,以下の条件を満たすような枝 $s$ 本と葉 $l$ 枚からなります。


条件

  1. $s, l$ は $0$ 以上の整数である。
  2. 枝の両端の点には,枝または葉が $0$ 個以上つながっている。
  3. すべての枝からたどりつくことができるような,とよばれる点がただひとつ存在する。
  4. 枝がループを作るようにつながっていることはない。

この植物の重さ $n$ は $n=2s+l$ で表されます。例えば,重さ $4$ の異なる植物をすべて描いたものは下図のようになります。

ここで,ある点に着目したときに,その点から出ている葉と枝の並びが異なるものは区別することに注意しましょう。

重さ $n$ の植物が $t_n$ 種類あるとき
\begin{equation}
\sum_{n=0}^{\infty}\frac{t_n}{3^n}
\end{equation}の値を求めなさい。ただし,級数が収束することは証明なしに用いてかまいません。

解答形式

答えは正の有理数 $r$ です。

  • $r$ が整数ならば,$r$ を半角数字で出力してください。
  • $r$ が整数でないならば,互いに素な自然数 $a, b$ を用いて $r=\displaystyle{\frac{a}{b}}$ と表し,$a$ を $1$ 行目に,$b$ を $2$ 行目にそれぞれ半角数字で出力してください。

lucy

公開日時: 2020年6月8日1:47 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$p^2+q^2+r^2+s^2=t^4+1$を満たす素数$(p,q,r,s,t)$の組を全て求めよ。但し$p\leq q\leq r\leq s$とする。

解答形式

一行目に式を満たす組が何組あるか答えよ。また、そのような組の中で、$t$が最大であるものについて、$p,q,r,s,t$の値をそれぞれ2行目、3行目、4行目…へ記入せよ。いずれも数字のみ記入せよ。

(本当は解き方まで見たいですが、個別判定が大変なのでこの形式にします。できれば、なぜそうなるかもしっかり考えてください。)

lucy

公開日時: 2020年6月8日1:02 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$x!+2=y^4+5y$を満たす自然数$(x,y)$の組をすべて求めよ。

解答形式

以下の文章に入る$a,b,c$の値を入力せよ。1行目に$a$を、2行目に$b$を、3行目に$c$を入力すること。

条件を満たす自然数の組は$a$組存在する。その組の中で、$x$が最大となるような組は$(x,y)=(b,c)$である。

masorata

公開日時: 2020年6月7日20:26 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

複素数平面上で点 $\mathrm{P}(z)$ と点 $\mathrm{Q}(w)$ が

$$
|z+1|=1\\
|z-w| = |z|
$$

をみたして動くとき、点 $\mathrm{Q}(w)$ が動く領域を $D$ とする。$D$ の面積 $S$ を求めよ。

解答形式

求めた値を小数で表し、小数第3位を四捨五入して小数第2位まで答えよ。
たとえば $S= \pi =3.14159265......$と解答する場合には、「3.14」と入力せよ。
すべて半角で入力すること。