cos2

cos2


問題文

定数$\,c\,$は$\,0<c\sqrt{c-1}<4\,$を満たす定数とする。
複素数列$\,\lbrace z_n \rbrace\,$は次の漸化式を満たし、初項$\,z_1\,$の実部は正である。
$$
z_{n+1}=\displaystyle \frac{1}{c}\left(z_n+\frac{1}{z_n}\right)\,\,\,\,\,(n=1,2,3,...)
$$
このとき$\,\displaystyle \lim_{ n \to \infty}|z_n-\alpha|=0\,$を満たすような複素数$\,\alpha\,$を求めよ。

解答形式

記述式(答えのみも歓迎)