tsx

tsx

統計情報

フォロー数0
フォロワー数0
投稿した問題数3
コンテスト開催数0
コンテスト参加数1
解答された数29
いいねされた数2
解答した問題数58
正解した問題数40
正解率69.0%

人気問題

4重根号

tsx 自動ジャッジ 難易度:
23月前

7

問題文

以下の多重根号を簡略化せよ。

2022/12/09 訂正:

難易度やnaoperc様よりご指摘いただいた根号の指数の誤りなど複数箇所を訂正しました.

2023/02/11 訂正:

問題文, 解答形式の文章を他の問題と統一しました. 解答に影響はありません.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

余擺々々...線

tsx 自動ジャッジ 難易度:
21月前

2

問題文

定点 $\mathrm{P_0}$, $\mathrm{P}$ があり, $\mathrm{P_0 P}=1$ を満たしている.
線分 $\mathrm{P_0 P}$ の中点を $\mathrm{P_1}$,
線分 $\mathrm{P_1 P}$ の中点を $\mathrm{P_2}$,
線分 $\mathrm{P_2 P}$ の中点を $\mathrm{P_3}$, ... というように, $n\in\mathbb{N}$ に対し, 点 $\mathrm{P_\mathit{n}}$ を 線分 $\mathrm{P_{\mathit{n}-1}\mathrm{P}}$ の中点として, 線分 $\mathrm{P_0 P}$ 上に無数の点をとる. いま, このようにしてできた全ての点が同時に出発して, 点 $\mathrm{P_\mathit{n}}$ が点 $\mathrm{P_{\mathit{n}-1}}$ を中心として円を描くように動くとき, $\displaystyle\lim_{n\to\infty}\mathrm{P_\mathit{n}}$ が描く曲線の長さを求めよ.
ただし, 線分 $\mathrm{P_0 P_1}$ が線分 $\mathrm{P_0 P}$ に対してなす角,
線分 $\mathrm{P_1 P_2}$ が線分 $\mathrm{P_0 P_1}$ に対してなす角,
線分 $\mathrm{P_2 P_3}$ が線分 $\mathrm{P_1 P_2}$ に対してなす角, ...
線分 $\mathrm{P_\mathit{n} P_{\mathit{n}+1}}$ が線分 $\mathrm{P_{\mathit{n}-1} P_\mathit{n}}$ に対してなす角の変化はすべて等しく, 一定の割合であるとする.

2023/02/22 訂正:

tima_C様のご指摘を受け、難易度を変更しました.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

ただし, 文字や根号などの係数が分数の場合は
$$
\frac{3}{2}x\rightarrow\frac{3x}{2}
$$
のように, 文字を分子にまとめてください.

無限級数1

tsx 自動ジャッジ 難易度:
20月前

1

問題文

級数
$$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}-\frac{1}{15}-\frac{1}{16}+\cdots$$
の収束値を求めよ. ただし, この級数の第 $n$ 項の絶対値は $\dfrac{1}{n}$ であり, 各項の符号は $4$ 項ごとに交代する.

解答形式

収束値は $\fbox{A}\text{ - }\fbox{F}$ をいずれも自然数として最も簡単な形で $\displaystyle{\frac{\fbox{A}+\fbox{B}\sqrt{\fbox{C}}}{\fbox{D}}\pi+\frac{\log{\fbox{E}}}{\fbox{F}}}$
と 表されます. 文字列 $\fbox{A}\,\fbox{B}\,\fbox{C}\,\fbox{D}\,\fbox{E}\,\fbox{F}$ を解答してください.

新着問題

無限級数1

tsx 自動ジャッジ 難易度:
20月前

1

問題文

級数
$$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}-\frac{1}{15}-\frac{1}{16}+\cdots$$
の収束値を求めよ. ただし, この級数の第 $n$ 項の絶対値は $\dfrac{1}{n}$ であり, 各項の符号は $4$ 項ごとに交代する.

解答形式

収束値は $\fbox{A}\text{ - }\fbox{F}$ をいずれも自然数として最も簡単な形で $\displaystyle{\frac{\fbox{A}+\fbox{B}\sqrt{\fbox{C}}}{\fbox{D}}\pi+\frac{\log{\fbox{E}}}{\fbox{F}}}$
と 表されます. 文字列 $\fbox{A}\,\fbox{B}\,\fbox{C}\,\fbox{D}\,\fbox{E}\,\fbox{F}$ を解答してください.

余擺々々...線

tsx 自動ジャッジ 難易度:
21月前

2

問題文

定点 $\mathrm{P_0}$, $\mathrm{P}$ があり, $\mathrm{P_0 P}=1$ を満たしている.
線分 $\mathrm{P_0 P}$ の中点を $\mathrm{P_1}$,
線分 $\mathrm{P_1 P}$ の中点を $\mathrm{P_2}$,
線分 $\mathrm{P_2 P}$ の中点を $\mathrm{P_3}$, ... というように, $n\in\mathbb{N}$ に対し, 点 $\mathrm{P_\mathit{n}}$ を 線分 $\mathrm{P_{\mathit{n}-1}\mathrm{P}}$ の中点として, 線分 $\mathrm{P_0 P}$ 上に無数の点をとる. いま, このようにしてできた全ての点が同時に出発して, 点 $\mathrm{P_\mathit{n}}$ が点 $\mathrm{P_{\mathit{n}-1}}$ を中心として円を描くように動くとき, $\displaystyle\lim_{n\to\infty}\mathrm{P_\mathit{n}}$ が描く曲線の長さを求めよ.
ただし, 線分 $\mathrm{P_0 P_1}$ が線分 $\mathrm{P_0 P}$ に対してなす角,
線分 $\mathrm{P_1 P_2}$ が線分 $\mathrm{P_0 P_1}$ に対してなす角,
線分 $\mathrm{P_2 P_3}$ が線分 $\mathrm{P_1 P_2}$ に対してなす角, ...
線分 $\mathrm{P_\mathit{n} P_{\mathit{n}+1}}$ が線分 $\mathrm{P_{\mathit{n}-1} P_\mathit{n}}$ に対してなす角の変化はすべて等しく, 一定の割合であるとする.

2023/02/22 訂正:

tima_C様のご指摘を受け、難易度を変更しました.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

ただし, 文字や根号などの係数が分数の場合は
$$
\frac{3}{2}x\rightarrow\frac{3x}{2}
$$
のように, 文字を分子にまとめてください.

4重根号

tsx 自動ジャッジ 難易度:
23月前

7

問題文

以下の多重根号を簡略化せよ。

2022/12/09 訂正:

難易度やnaoperc様よりご指摘いただいた根号の指数の誤りなど複数箇所を訂正しました.

2023/02/11 訂正:

問題文, 解答形式の文章を他の問題と統一しました. 解答に影響はありません.

2023/03/21 訂正:

解答形式を変更しました. 解答に影響はありません.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

開催したコンテスト

まだ開催したコンテストがありません

参加したコンテスト

順位 コンテスト名 得点 終了日時 作成者
2 数学思考力テスト 第1回 600 2023年4月1日20:00 rakuraku1216 rakuraku1216