アクセスがしづらい状況について (2025年1月23日14:22)
現在、ポロロッカにアクセスがしづらい状況が発生しております。 サーバー強化など応急処置は完了しておりますが、本格的な調査は2月ごろとなる見込みです。 ご迷惑をおかけし、大変申し訳ございません。
oolong_tea

oolong_tea

統計情報

フォロー数0
フォロワー数0
投稿した問題数5
コンテスト開催数0
コンテスト参加数0
解答された数19
いいねされた数0
解答した問題数21
正解した問題数17
正解率81.0%

人気問題

2月前

12

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(1)$ $P(2)$の値を求めよ。

(2)~(4)は,自作場合の数・確率1-2につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

自作場合の数・確率1-2

oolong_tea 自動ジャッジ 難易度:
2月前

4

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(2)$ $P(n)$を$n$の式で表せ。

(3)(4)は,自作場合の数・確率1-3につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

$$
P(n)= \frac{A(Bn+C)(Dn+E)}{F(Gn^{2}+Hn+I)}
$$

$A$~$I$に当てはまる整数を半角数字,空白区切りで回答

文字式の分数解答で自動ジャッジするのが大変だったので穴埋め式です。
わざとわかりづらくしてるので、1が入るところとかあります。

この問題は(2)です。が(1)を解かなくてもできます。解くと作者が喜びます。

自作場合の数・確率1-3

oolong_tea 自動ジャッジ 難易度:
2月前

2

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(3)$ $\lim_{n\to \infty}P(n)$を求めよ。

(4)は,自作場合の数・確率1-4につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

この問題は(3)です。自作場合の数・確率1-2を解いてから解くことをお勧めします。

自作場合の数・確率1-4

oolong_tea 自動ジャッジ 難易度:
2月前

1

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(4)$ できた2次方程式が異なる2つの実数解をもつとき,その2解が共に負である条件付き確率を求めよ。

解答形式

$$
(求める条件付き確率)=\frac{A(Bn+C)(Dn+E)(Fn+G)}{Hn(In+J)(Kn+L)}
$$

$A$~$L$に当てはまる整数を半角数字,空白区切りで解答

わざとわかりづらくしてるので,1が入るところとかあります。

この問題は(4)です。(3)までを解かなくてもできますが,少し大変かもしれません。

データの分析・数列

oolong_tea 自動ジャッジ 難易度:
21時間前

0

問題文

$1$ から $30$ までの自然数が書かれたカードがそれぞれ $1$ 枚ずつの計 $30$ 枚ある。
この中から $1$ 枚を引き,書かれている数字を確認してから束に戻す操作を $11$ 回繰り返す。
この $11$ 回の操作で得られた自然数を小さい順にならべ,$A_{1}$ から $A_{11}$ とする。
$A_{1}$ から $A_{11}$ は以下の条件を満たしている。

<条件>
① $A_{1}$ から $A_{11}$ は相異なる自然数である。
② データの範囲は $27$ である。
③ データの四分位範囲 [$\mathrm{IQR}$] は $9$ である。
④ 四分位数 [$Q_1,Q_2,Q_3$] はこの順に等比数列になっている。
⑤ 中央値と平均値 [$\bar{A}$] の差の絶対値は $1$ である。
⑥ $A_7$ から $A_{11}$ までの $5$ つの数の和は $A_1$ から $A_5$までの $5$ つの数の和のちょうど $2$ 倍である。
⑦ $A_{1}$ から $A_{11}$ の中に立方数が $2$ つある。
⑧ このデータのうち四分位数を除いた $8$ 個の数字を $2$ つずつに分けてできた $4$ つの数字の組
  $(A_1,A_2),(A_4,A_5),(A_7,A_8),(A_{10},A_{11})$ について、それぞれの組に $1$ つずつ素数がある。
⑨ このデータには外れ値が $1$ つ存在する。ただし外れ値は以下の通りに定義する。
   [$Q_1-1.5 \times \mathrm{IQR}$ 以下 または $Q_3+1.5 \times \mathrm{IQR}$ 以上]

問 このデータの要素を決定せよ。

解答形式

$A_1$ から $A_{11}$ までの11個の自然数を半角空白区切りで1行で回答

投稿者より

数学の問題というよりパズルっぽくなってしまいましたが,作るのが大変だったので供養。
問題の不備、解説に不十分なところ、冗長なところなどありましたら,
コメントで教えてくださるとありがたいです。

解説は最初から誰でも見られるようになっていますが,少し長いです。

本当はこの後,状況設定的に確率・場合の数の問題を入れようとしてたが,大変なので一旦おしまい。
気が向いたら続きをつくるます。

新着問題

データの分析・数列

oolong_tea 自動ジャッジ 難易度:
21時間前

0

問題文

$1$ から $30$ までの自然数が書かれたカードがそれぞれ $1$ 枚ずつの計 $30$ 枚ある。
この中から $1$ 枚を引き,書かれている数字を確認してから束に戻す操作を $11$ 回繰り返す。
この $11$ 回の操作で得られた自然数を小さい順にならべ,$A_{1}$ から $A_{11}$ とする。
$A_{1}$ から $A_{11}$ は以下の条件を満たしている。

<条件>
① $A_{1}$ から $A_{11}$ は相異なる自然数である。
② データの範囲は $27$ である。
③ データの四分位範囲 [$\mathrm{IQR}$] は $9$ である。
④ 四分位数 [$Q_1,Q_2,Q_3$] はこの順に等比数列になっている。
⑤ 中央値と平均値 [$\bar{A}$] の差の絶対値は $1$ である。
⑥ $A_7$ から $A_{11}$ までの $5$ つの数の和は $A_1$ から $A_5$までの $5$ つの数の和のちょうど $2$ 倍である。
⑦ $A_{1}$ から $A_{11}$ の中に立方数が $2$ つある。
⑧ このデータのうち四分位数を除いた $8$ 個の数字を $2$ つずつに分けてできた $4$ つの数字の組
  $(A_1,A_2),(A_4,A_5),(A_7,A_8),(A_{10},A_{11})$ について、それぞれの組に $1$ つずつ素数がある。
⑨ このデータには外れ値が $1$ つ存在する。ただし外れ値は以下の通りに定義する。
   [$Q_1-1.5 \times \mathrm{IQR}$ 以下 または $Q_3+1.5 \times \mathrm{IQR}$ 以上]

問 このデータの要素を決定せよ。

解答形式

$A_1$ から $A_{11}$ までの11個の自然数を半角空白区切りで1行で回答

投稿者より

数学の問題というよりパズルっぽくなってしまいましたが,作るのが大変だったので供養。
問題の不備、解説に不十分なところ、冗長なところなどありましたら,
コメントで教えてくださるとありがたいです。

解説は最初から誰でも見られるようになっていますが,少し長いです。

本当はこの後,状況設定的に確率・場合の数の問題を入れようとしてたが,大変なので一旦おしまい。
気が向いたら続きをつくるます。

自作場合の数・確率1-4

oolong_tea 自動ジャッジ 難易度:
2月前

1

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(4)$ できた2次方程式が異なる2つの実数解をもつとき,その2解が共に負である条件付き確率を求めよ。

解答形式

$$
(求める条件付き確率)=\frac{A(Bn+C)(Dn+E)(Fn+G)}{Hn(In+J)(Kn+L)}
$$

$A$~$L$に当てはまる整数を半角数字,空白区切りで解答

わざとわかりづらくしてるので,1が入るところとかあります。

この問題は(4)です。(3)までを解かなくてもできますが,少し大変かもしれません。

自作場合の数・確率1-3

oolong_tea 自動ジャッジ 難易度:
2月前

2

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(3)$ $\lim_{n\to \infty}P(n)$を求めよ。

(4)は,自作場合の数・確率1-4につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

この問題は(3)です。自作場合の数・確率1-2を解いてから解くことをお勧めします。

自作場合の数・確率1-2

oolong_tea 自動ジャッジ 難易度:
2月前

4

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(2)$ $P(n)$を$n$の式で表せ。

(3)(4)は,自作場合の数・確率1-3につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

$$
P(n)= \frac{A(Bn+C)(Dn+E)}{F(Gn^{2}+Hn+I)}
$$

$A$~$I$に当てはまる整数を半角数字,空白区切りで回答

文字式の分数解答で自動ジャッジするのが大変だったので穴埋め式です。
わざとわかりづらくしてるので、1が入るところとかあります。

この問題は(2)です。が(1)を解かなくてもできます。解くと作者が喜びます。

2月前

12

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(1)$ $P(2)$の値を求めよ。

(2)~(4)は,自作場合の数・確率1-2につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

開催したコンテスト

まだ開催したコンテストがありません

参加したコンテスト

まだ参加したコンテストがありません