udonoisi

udonoisi

Twitter ID: @ArSEnic33_math
うどんおいしい
うどんおいしい

モンモール数だよ

udonoisi 採点者ジャッジ 難易度:
11日前

1

問題文

$D_n$ を $1$ から $n$ までの整数の順列 $(a_1, a_2, \cdots ,a_n)$ のうち
$$a_k \neq k \quad (k=1, 2, \cdots ,n)$$ を満たすものの個数とする. 例えば, $D_2=1, D_3=2, D_4=9$ である.
このとき,任意の素数 $p$ に対して$$D_{p-1} \equiv \sum_{k=0}^{p-1}{k! } \pmod{p}$$ となることを示せ.

解答形式

方針だけでも採点します

1と4

udonoisi 自動ジャッジ 難易度:
26日前

14

問題文

非負整数 $n$ に対して, $a_n$ を以下で定めます.$$a_0=1,\quad a_{n+1}=10a_n+4$$ このとき, $a_n$ が累乗数となるような非負整数 $n$ に対して, $a_n$ の総和を求めてください.
ただし, 累乗数とは, 自然数 $a$ と$2$ 以上の自然数 $b$ を用いて $a^b$ と表せる数です.

解答形式

例)整数を答えてください.

連立方程式だよ

udonoisi 自動ジャッジ 難易度:
53日前

5

問題文

$11$ 個の実数 $A_0 , A_1 , \cdots , A_{10} $ が $n=0 , 1 , \cdots , 9$ に対して$$\sum_{k=0}^{10}{A_kk^n}=0$$を満たします. $A_0=1$ のとき, $\sum_{k=0}^{10}{A_kk^{10}}$ の値を求めてください.
ただし, $0^0=1$とします.

解答形式

非負整数を答えてください.