sulippa

sulippa

高1 数検準1級、jmo予選通過点獲得(理論値)、得意分野:数IA・微積分・極限
高1 数検準1級、jmo予選通過点獲得(理論値)、得意分野:数IA・微積分・極限

統計情報

フォロー数3
フォロワー数5
投稿した問題数44
コンテスト開催数7
コンテスト参加数0
解答された数133
いいねされた数32
解答した問題数6
正解した問題数3
正解率50.0%

人気問題

整数問題 解説あり

sulippa 自動ジャッジ 難易度:
2月前

47

問題文

次の方程式を満たす、素数 $p$ と正の整数 $n, m$ の組 $(p, n, m)$ を全て求めよ。
$$ p^n + 144 = m^2 $$

解答形式

条件を満たす組中の数字の総和を半角で入力してください

問題1

sulippa 自動ジャッジ 難易度:
2日前

10

問題文

$3^{2025}$を $11$ で割った余りを求めよ。

解答形式

半角左詰め

第2問

sulippa 自動ジャッジ 難易度:
47日前

9

問題文

$P(x)$ は整数係数の3次多項式である。
すべての整数$ n $に対して、$P(n)+1$ は常に立方数となるとする
$P(0)=7$ および $P(1)=26$ が成立している。
このとき、$P(2)-P(-1)$ の値を求めよ。

回答形式

半角スペースなし

第3問

sulippa 自動ジャッジ 難易度:
47日前

7

問題

$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。
$P(0)=6$
$P(1)=4$
のとき、$P(4)$の値を求めよ。

解答形式

半角でスペースなし

整数問題

sulippa 採点者ジャッジ 難易度:
2月前

5

問題文

素数 $p$ と正の整数 $n$ が、以下の等式を満たすとします。
$$\frac{n^2+np+p^2}{n+p} = 2p-1$$
このような組 $(n,p)$ を全て求めてください。

解答形式

解が有限個であるとされた場合は、全ての解と、それ以外に解が存在しないことの証明を、簡単で構わないのでお願いします。無限個とされた場合は証明いらないので、何らかの形で解を表してください。証明に完全性がないと見なした場合は、採点機能がない都合上、99点をあげたいところも不正解とさせていただきます

極限

sulippa 自動ジャッジ 難易度:
2月前

5

問題文

n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。

量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。

次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$

ただし、オイラー・マスケロー二定数を $γ$ とする。

解答形式

半角で

新着問題

問題4

sulippa 自動ジャッジ 難易度:
2日前

0

問題文

$p$ を $101$ 以上の素数とする。$g$ を法 $p$ における原始根とし、$1$ から $p-1$ までの整数 $k$ に対して、$g^{\text{ind}(k)} \equiv k \pmod p$ となる $0 \le \text{ind}(k) \le p-2$ の整数 $\text{ind}(k)$ を定める。

ある整数 $k$ ($2 \le k < p$) に対して、数列 ${a_n}$ を以下で定める。
* $a_1 = k$
* $a_{n+1} \equiv a_n \cdot g \pmod p \quad (n=1, 2, 3, \dots)$

また、数列 ${b_n}$ を $b_n = \text{ind}(a_n)$ で定め、数列 $\ {b_n}$ の初項から第 $p-1$ 項までの和
$S = \sum_{n=1}^{p-1} b_n$
とする。
このとき、和 $S$ が $2000$ で割り切れるような素数 $p$ の最小値を求めよ。

解答形式

半角左詰め

問題3

sulippa 自動ジャッジ 難易度:
2日前

2

問題文

$p=3, \quad q=5, \quad r=7$

$X = p^q + q^p$
$Y = q^r + r^q$
$Z = r^p + p^r$

$N = X^p + Y^q + Z^r$

このとき、$N$を$105$で割った余りを求めよ。

解答形式

半角左詰め

問題1

sulippa 自動ジャッジ 難易度:
2日前

10

問題文

$3^{2025}$を $11$ で割った余りを求めよ。

解答形式

半角左詰め

問題5

sulippa 自動ジャッジ 難易度:
2日前

3

問題文

$p, q, r $を互いに異なる3つの素数とする。

整数 $K = (qr)^{p-1} + (rp)^{q-1}+ (pq)^r$が、
$K ≡ p+q-1 (mod r)$
という条件を満たすとき、和 $p+q+r$ の最小値を求めよ。

解答形式

半角左詰め

問題6

sulippa 自動ジャッジ 難易度:
2日前

0

問題文

数列 ${a_n} $を、初項 $a_0 = 2, a_1 = 1 $と、漸化式 $a_{n+2} = a_{n+1} + a_n (n ≧ 0) $によって定める。
集合 $S $を、$1 ≦ k ≦ 42$ を満たす整数$ k $のうち、方程式 $m^2 - 43n = k $が整数解 $(m, n)$ を持たないような $k$ 全体の集合とする。
このとき、積 $P$ $= ∏_{k ∈ S} a_k$ を$43$で割った余りを求めよ。

解答形式

半角左詰め

問題2

sulippa 自動ジャッジ 難易度:
2日前

3

問題文

整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。

$x \equiv p \pmod{9797}$
$x \equiv 11p + 69 \pmod{9991}$

この条件を満たす最小の素数 $p$ を求めよ。

解答形式

半角左詰め

開催したコンテスト

コンテスト名 日程 作成者
mod特訓 2025-07-14 21:45
〜 2025-07-14 23:00
sulippa sulippa
√に関する問題 2025-07-05 21:30
〜 2025-07-05 23:00
sulippa sulippa
三角形の内接円 2025-06-06 21:00
〜 2025-06-06 22:15
sulippa sulippa
代数 全3問 2025-05-30 21:30
〜 2025-05-30 22:20
sulippa sulippa
2025-05-25 20:15
〜 2025-05-25 20:23
sulippa sulippa
整数問題4問 2025-05-19 20:00
〜 2025-05-19 21:30
sulippa sulippa
オリジナル漸化式の一般項10問 2025-05-16 21:30
〜 2025-05-17 00:00
sulippa sulippa

参加したコンテスト

まだ参加したコンテストがありません