ある非負整数$n$に対し、$f(n)$で$n$の各桁の積を表すものとする。 $n=f(n)$を満たす$n$の個数を求めよ。
有限ならば半角数字でその個数を、無限ならば$-1$を入力してください。
以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。 $$ \begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases} $$
半角数字で個数を入力してください。
$n$を非負整数とする。 $√(n^2+7n-14)$が整数となるような$n$の値を全て求めよ。
$n$の値を小さい順に一行区切りで入力してください。
$x$、$y$、$n$を正整数、$p$を$n$以上の素数とする。 $$x^{p}-y^{p}=p^{n}$$ を満たすような組($x$、$y$、$n$、$p$)は存在しないことを示せ。
証明をお願いします。
$n$を正整数、$p$を素数とする。 $n^{2}+p$が$4$で割り切れるような組$(n$、$p)$は無限に存在することを示せ。
実数から実数への関数$f$であって任意の実数$x$、$y$について$$f(x)+f(f(y)+x)=f(f(x))+4y$$ が成り立つようなものを全て求めよ。
簡単でいいので証明もお願いします。