smasher

smasher

よろしく!
よろしく!

よくある整数問題

smasher 自動ジャッジ 難易度:
10日前

7

問題文

$n$を非負整数とする。
$√(n^2+7n-14)$が整数となるような$n$の値を全て求めよ。

解答形式

$n$の値を小さい順に一行区切りで入力してください。

第3問

smasher 採点者ジャッジ 難易度:
33日前

0

問題文

$x$、$y$、$n$を正整数、$p$を$n$以上の素数とする。
$$x^{p}-y^{p}=p^{n}$$
を満たすような組($x$、$y$、$n$、$p$)は存在しないことを示せ。

解答形式

証明をお願いします。

第1問

smasher 採点者ジャッジ 難易度:
33日前

0

問題文

$n$を正整数、$p$を素数とする。
$n^{2}+p$が$4$で割り切れるような組$(n$、$p)$は無限に存在することを示せ。

解答形式

証明をお願いします。

第2問

smasher 採点者ジャッジ 難易度:
33日前

2

問題文

実数から実数への関数$f$であって任意の実数$x$、$y$について$$f(x)+f(f(y)+x)=f(f(x))+4y$$
が成り立つようなものを全て求めよ。

解答形式

簡単でいいので証明もお願いします。