yayuyo_134

yayuyo_134

総和を求めよ

yayuyo_134 自動ジャッジ 難易度:
12時間前

1

問題文

$a_{1}+a_{2}+a_{3}+...+a_{100}=100$を満たす100個の非負整数の組$a_{1},a_{2},a_{3},...,a_{100}$の全てについて、
$$\frac{1}{a_{1}!a_{2}!a_{3}!...a_{100}!}$$の総和を求めてください。

解答形式

答えが異なる自然数a,bを用いてa^b/b!という形で表されるため、a+bを回答してください。

図形問題

yayuyo_134 自動ジャッジ 難易度:
13時間前

0

問題文

平面上に鋭角三角形ABCがある。以下の条件をみたすように点Dを定める。
「$AB^{2}+BC^{2}+CA^{2}=2CD^{2}$
 $BC=AD$
 $点Dと点Bは直線ACに関して反対の向きにある$」
ここで線分ACを直径とする円と線分AD,BCとの交点をそれぞれE,Fとおき、
直線ACとEFの交点をPとするとAC=100,EF=90が成立した。
このとき、線分APの長さを求めよ。

解答形式

互いに素な正の整数p,qを用いてp/qと表されるので、p/qと解答してください