2024年は閏年なので、2024年M月D日という日付が存在するような$(M,D)$の組は366組存在します。このような組のうち、 $$\frac{2024}{M・D}$$ が整数となる組の個数を求めてください。
半角数字で入力してください。
$M$の値で場合分けしましょう。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
一辺の長さが $12$ の正方形 $ABCE$ の外部に点 $D$ を、三角形 $CDE$ が正三角形になるようにとります。 正方形 $ABCE$ の外接円と直線 $DE$ の交点のうち $E$ でない方を $F$ とするとき、$AF^2$ の値を解答してください。
正整数 $x, y$ が $$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$ をみたすとき,$x$ のとり得る最小の値を求めて下さい.
半角英数にし、答えとなる正整数値を入力し解答して下さい.
OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732) のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です. 4bにそぐわないとしてOMCへの使用には至りませんでしたが,せっかくなのでよければ解いてみてください.
中心が$O$の円と線分$AB$の二つの交点のうち$A$から近い順に$C,D$とすると $BO=11,CO=7,AC=CD=DB$ であった. このとき三角形$ABO$の面積の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$A$ さんを含む $10$ 人の選手がゲームの格ゲー大会総当たり形式で行いました. $A$ さん以外の $9$ 人の選手は以下の条件を満たしているとき, $A$ さんの勝利した回数としてあり得るものの総和を求めてください. しかし,引き分けは考えないものとします.
非負整数を半角数字で答えてください.
自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します. $$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記 =8 のところ =6 と書いてしまっていたため訂正しました 大変申し訳ありません
桁数が偶数の自然数$n$の各位を$2$桁ごとに分割し、そうしてできる自然数の和を$S(n)$のする。例えば、 $S(2024)=20+24=44,S(120321)=12+3+21=36$ である。 さて、 $n+S(n)=5233$ を満たすような$n$を全て求めよ。
$n$の値を整数でお答えください。
以下の条件を満たすような $15$ 個の白石と $15$ 個の黒石の並べ方は何通りありますか.
非負整数で解答してください.
$0$ でない相異なる実数 $a,b,c,d$ が以下の関係式を満たすとき,$a^2+b^2+c^2+d^2$ の値を求めてください. $\begin{cases} a^3-12a^2-34a+bcd=0\\ b^3-12b^2-34b+cda=0\\ c^3-12c^2-34c+dab=0\\ d^3-12d^2-34d+abc=0\\ \end{cases}$
半角数字で解答してください.
$AB=30,AC=36$の三角形$ABC$があり線分$BC$上に$BDEC$の順に並び$BD:DE:EC=1:5:3$となるよう 点$D,E$をとると,線分$AB$と$AC$に接し点$D,E$を通る円が存在した. このとき$BC$の長さの$2$乗を解答してください.
自然数a b c について abc-ab-a=17 a<b<c となる自然数のa b c の組の数を答えなさい
半角数字で答えてください
( https://mathlog.info/articles/Lf8QaKPklfv156yuq309 問題13) 三角形$ABC$において外接円,内接円,角$A$内の傍接円の半径をそれぞれ$R,r,r_A$とすると
$$R=14,r=6,r_A=19$$
が成り立ちました.このとき$BC$の長さの二乗を求めてください.
答えを入力してください.
縦 $5$ 列、横 $8$ 列、合計 $40$ 個の机があり、これらの上に合計 $8$ 冊の本を置くことを考えます。 どの縦・横の列にも最低 $1$ 冊の本が置かれた机のある本の置き方は何通りありますか? ただし、同じ列に本が置かれた机が複数あっても構いません。
非負整数を半角で入力してください。
解答に誤りがあったため再投稿