OMC不採用問題1

sta_kun 自動ジャッジ 難易度: 数学 > 競技数学
2024年7月2日23:22 正解数: 10 / 解答数: 10 (正答率: 100%) ギブアップ数: 0

問題文

凸四角形 $ABCD$ において,
$$AB=BD=7 ,BC=5,CD=4, 2∠ACB+∠ACD=180°$$

が成り立ちました.このとき,線分 $AD$ の長さは互いに素な自然数 $a,b$ を用いて $\dfrac{a}{b}$​ と表せるので $a+b$ を解答してください.

解答形式

半角数字で解答してください.
不備等あれば教えて下さい。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

暁山瑞希 誕生日

shakayami 自動ジャッジ 難易度:
4月前

8

三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.

$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.

300G

eq_K 自動ジャッジ 難易度:
18月前

9

問題文

$4$ 点 $A,B,C,D$ は同一円周上にあり,その内部(辺上を含まない)に点 $P$ をとります.
また,線分 $AP,BP,CP,DP$ の垂直二等分線をそれぞれ $a,b,c,d$ とします.
$a,b$ の交点を $E$,$b,c$ の交点を $F$,$c,d$ の交点を $G$,$d,a$ の交点を $H$ とすると,$4$ 点 $E,F,G,H$ は同一円周上にあり,四角形 $EFGH$ の二本の対角線は $P$ で交わりました.
 そして,以下が成立しました:
$$HP=5,\quad HE=11,\quad EF=16$$
 このとき,$HG$ の長さの二乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.

解答形式

非負整数を半角で入力してください.

KOTAKE杯007(S)

MrKOTAKE 自動ジャッジ 難易度:
4月前

21

問題文

$AB<AC$ を満たす三角形 $ABC$ があり,外接円を $\Gamma$ ,$A$ 混線内接円を $\Omega$ とします.$\Gamma$ と $\Omega$ の接点を $P$ とし,$\Gamma$ の点 $A$ を含む方の弧 $BC$ の中点を $M$ とし,線分 $MP$ と $\Omega$ の交点のうち $P$ でない方を $X$ ,線分 $AP$ と $\Omega$ の交点のうち $P$ でない方を $Y$ ,直線 $AX$ と $\Gamma$ の交点のうち $A$ でない方を $Z$ とすると以下が成立しました.
$$XY=3,\quad XZ=15,\quad PY=10$$

このとき線分 $AM$ の長さは互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(T)

MrKOTAKE 自動ジャッジ 難易度:
4月前

16

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり,外接円 $\Omega$ の中心を $O$, $\Omega$ の $A$ を含まない方の弧 $BC$ の中点を $M$ とします.$\Omega$ の点 $B,C$ それぞれにおける接線の交点を $D$ とし,線分 $AD$ と $\Omega$ の交点のうち $A$でない方を $P$ とし,点 $P$ を通り直線 $BC$ に垂直な直線と線分 $AM$ の交点を $Q$ とすると以下が成立しました.
$$AQ=8,\quad OQ=3,\quad \angle PMO=\angle QOM$$
このとき線分 $BM$ の長さの $2$ 乗は互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

接線の交点

hkd585 自動ジャッジ 難易度:
3年前

7

問題文

$\triangle ABC$の辺$AB$上に点$D$が,辺$AC$上に点$E$がそれぞれある.また,辺$BC$上に2点$P,Q$があり,4点$B,P,Q,C$はこの順に並んでいる.
$\triangle BDP$の外接円の$B$における接線と,$\triangle CEQ$の外接円の$C$における接線とが点$F$で交わっている.
$AD=2,DB=4,AE=5,EC=3,BP=1,PQ=10,QC=1$のとき,$AF=\dfrac{a\sqrt{b}}{c}$である.ただし,$a,b,c$はいずれも正の整数であり,$a,c$は互いに素である.また,根号の内部は十分簡単になっている.
$a+b+c$の値を求めよ.

解答形式

半角数字で解答してください.

N1

orangekid 自動ジャッジ 難易度:
22月前

16

問題文

次の方程式の整数解を求めよ。
ただし、$p, q$は非負整数である。
$$
x^2-15x+3^p-2^q=0
$$

解答形式

半角数字で小さい順につなげて入力してください。
例 $x=-4,-1,0,3,4$の時 -4-1034

400G

poino 自動ジャッジ 難易度:
18月前

10

問題文

$AB=13,BC=14,CA=15$ を満たす三角形 $ABC$ において、外心を $O$、辺 $AB$ の中点を $M$、辺 $AC$ の中点を $N$、$A$ から辺 $BC$ に下ろした垂線の足を $D$ とします。また、円 $DMN$ と $AD$ の交点を $X$、$MN$ について $X$ と対称な点を $Y$ とします。このとき四角形 $BCOY$ の面積を求めてください。

解答形式

半角数字で入力してください。

内接円, 外接円, 傍接円

tori9 自動ジャッジ 難易度:
8月前

16

問題文

三角形 $ABC$ の内心と外心をそれぞれ $I, O$ としたところ,$AI=AO$ が成り立ちました.三角形 $ABC$ の内接円,外接円の半径がそれぞれ $142, 857$ であるとき,$\angle{A}$ 内の傍接円の半径を求めてください.

解答形式

例)答えは互いに素な正整数 $a, b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.

KOTAKE杯007(J)

MrKOTAKE 自動ジャッジ 難易度:
4月前

24

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり, $A$ から $BC$ に下ろした垂線の足を $H$ とし,線分 $AH$ 上に $\angle ABP = \angle ACP$ を満たす点 $P$ をとります.また,線分 $BC$ と三角形 $ACP$ の外接円の交点のうち $C$ でないものを $D$ とし,直線 $BP,AD$ の交点を $E$ とすれば,
$$BP=CD=5,\quad PE=3$$
が成立したので三角形 $ABC$ の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(O)

MrKOTAKE 自動ジャッジ 難易度:
4月前

25

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり,点$A,B,C$ から対辺におろした垂線の足をそれぞれ $D,E,F$ とします.半直線 $EF$ と直線 $BC$ の交点を $P$ とすれば,
$$AC=BP,\quad BD=60,\quad CD=92$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(L)

MrKOTAKE 自動ジャッジ 難易度:
4月前

23

問題文

鋭角三角形 $ABC$ があり,点$A,B,C$ から対辺におろした垂線の足をそれぞれ $D,E,F$ とします.$AD,EF$ の交点を $P$ とすると,以下が成立しました.
$$DE=37,\quad EF=40,\quad AP:PD=5:6$$
このとき線分 $DF$ の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(N)

MrKOTAKE 自動ジャッジ 難易度:
4月前

20

問題文

鋭角三角形 $ABC$ があり重心を $G$,垂心を $H$ とします.線分 $GH$ の中点を $M$ とすれば,直線 $AM$ は $ \angle BAC$ を二等分し,

$$BC=30,\quad CH=25$$
が成立しました.このとき線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.