点の定義は次をチェック(https://pororocca.com/problem/2047/) $円X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.
答えは互いに素な整数$a,b,c,d$で,$\frac{a+b√c}{d}$と書けるので,$a+b+c+d$を求めて下さい.但しd>0. 尚,半角で打ち込むこと.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$$ |{\sqrt{i^2}-\sqrt{2i^2}}||{\sqrt{i^2}+\sqrt{3i^2}}||{\sqrt{2i^2}-\sqrt{4i^2}}||{\sqrt{2i^2}+\sqrt{4i^2}}|\\を求めて下さい。 $$ $$ (1)24(2)36(3)42(4)54 $$
半径$15$の円$ω$について,ある直径$AB$を考える. $AB$を三等分する点を順に$P,Q$とし(つまり$A・P・Q・B$の順に点が並ぶ), $AP$を直径とする円$X$を描く. また,$AB$に直交する直径$CD$について,同様に$R,S$を取り($C・R・S・D$の順),$CR$を直径とする円$X'$を描く. ここで,円$X$の接線の内,$CD$と平行で且つ円$X'$側のものを直線$F$,円$X'$の接線の内,$AB$と平行で且つ円$X$側のものを直線$G$とする. 直線$F,G,$円$ω$に接する円$T$の半径を求めよ.
答えは整数$n,m,l$で$n√m+l$と書ける. $n+m+l$を求めて下さい. 尚,マイナス含め,全て半角で打ち込むこと.
続編(normal):https://pororocca.com/problem/2048/
例)(1)はb√c/aとなるので、a,b,cの値をそれぞれ1,2,3行目に書いてください ⑵はdπ/eとなるので、d,eの値を4,5行目に書いてください
$$ a<0のとき、\\3log_416^{|a|}=log_b\sqrt{b^{24}}についての、aの値を求めてください。 $$
aiueaiuの7字を並べるとき少なくとも1つの「ai」が「ue」よりも前にあるのは何通りか。
例)半角英数字。
$$ f(n)={i}^{n+1}\\についてn=10000のとき、解を選んで下さい。 $$ $$ (1)-{i}(2){i}(3)1(4)-1 $$
△ABCの内心をI, 直線AIとBCの交点をDとするとAI=CI=CD=6 であった. このときACの長さは正の整数a,b を用いて√a+bと表せるので, a+bを解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
$$ 次の因数分解の形はどれか。\\ {m}^{2}{n}^{2}+lm{n}^{2}+{l}^{2}{m}^{2}n+{l}^{2}m{n}^{2} $$ $$ (1)l(lm+1)(ln+n)(m+mn) (2)l(ln+m)(mn+1)(l+mn) (3)l(ln+1)(m+n)(lmn+mn) (4)l(lm+1)(m+n)(mn+lmn) $$
$$ |tan2250°・cos1800°・sin1200°|\\を求めて下さい。 $$ $$ (1)\frac{1}{2}(2)\frac{\sqrt{3}}{2}(3)1(4)2 $$
xy平面上にて、中心が直線y=3x上にあり、直線2x+y=0に接し、点(2,1)を通る円の方程式は(x-a)^2+(x-b)^2=r^2である。 a、b、r^2の値をそれぞれ求めよ。
a○b△R□ ○△□のところに答えの数字を入力してください。 r^2はRと表記してください。 a=2 b=3 r^2=4の場合 a2b3R4と入力
$$ a<0のとき、a=|\sqrt{2^{log_327*log_216}}|\\のaについて値? $$
$$ 次の因数分解した形はどれか。\\ ab+bc+{a}^{2}{b}^{2}+a{b}^{2}c $$ $$ (1){ab}^{2}(bc+1) (2){bc}^{2}(ab+1) (3)2ab(bc+1) (4)(ab+1)(ab+bc) $$