D. ループ

G414xy 自動ジャッジ 難易度: 数学 > 競技数学
2024年10月1日21:00 正解数: 2 / 解答数: 77 (正答率: 2.6%) ギブアップ数: 1
この問題はコンテスト「G4x4MC (x=1)」の問題です。

問題文

4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか?
但し、「ループの一部分である」とは、
全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。

解答形式

半角数字で入力してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

C. 地雷

G414xy 自動ジャッジ 難易度:
11月前

14

問題文

4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。
地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。

解答形式

半角数字で入力してください。

B. 8分割

G414xy 自動ジャッジ 難易度:
11月前

19

問題文

4x4のマス目を1x2のタイル8枚で敷き詰める方法は何通りありますか?

解答形式

半角数字で入力してください。

自作3

tomorunn 自動ジャッジ 難易度:
3月前

5

問題文

モニターに0が表示されている。ここには3つのボタンがあり、
・ボタン$A$を押すとモニターの数字が1増える。
・ボタン$B$を押すとモニターの数字が2増える。
・ボタン$C$を押すとモニターの数字が3増える。
ボタン$A~C$をそれぞれ任意の回数押したとき、
最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。

解答形式

例)半角数字で入力してください。

E. 更に分割

G414xy 自動ジャッジ 難易度:
11月前

8

問題文

4x4のマス目のうち1つを、更に4x4に分割します。いくつかのマスで長方形を作るとき、何種類の長方形を作れますか。?
但し、同型でも場所が異なるなら違う種類と見なします。

解答形式

半角数字で入力してください。

連続する整数の積

noname 自動ジャッジ 難易度:
7月前

9

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。

F. 4分割

G414xy 自動ジャッジ 難易度:
11月前

59

問題文

$(0,0),(4,0),(0,4),(4,4)$を頂点とする正方形を、頂点が全て格子点上にある三角形4つに分割する方法はいくつありますか。
回転や裏返しをして同じ形になるものも区別するものとします。

解答形式

半角数字で入力してください。

A. 14分割

G414xy 自動ジャッジ 難易度:
11月前

10

問題文

4x4のマス目を境界線で区切り、14分割する方法は何通りありますか?

解答形式

半角数字で入力してください。

自作2

tomorunn 自動ジャッジ 難易度:
3月前

9

問題文

太郎君は遅刻魔で、よく遅刻をする。
それを見かねた先生は、
・3日連続で遅刻したら特別指導
・10日間の間に6回以上遅刻をしたら特別指導
というルールを設けた。このとき、10日間で太郎君が特別指導を受けないよう登校する方法は合計何通りあるか。

解答形式

例)半角数字で入力してください。

問題5

tomorunn 自動ジャッジ 難易度:
3日前

7

問題文

区別できる6個の箱に区別できる球を12個入れる(球が1つも入っていない箱があってもよい).
$i$ 番目の箱に入っている玉の数を $A_i$ とする.
入れ方すべてについて,積 $A_1^2 A_2^2\cdots A_6^2$ を計算し,その和を求めよ.

解答形式

半角数字で入力してください。

Reverse digits (学コン2024-12-3)

Lim_Rim_ 自動ジャッジ 難易度:
5月前

6

問題文

10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.

備考

本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.

問題4

tomorunn 自動ジャッジ 難易度:
3日前

9

問題文

以下の条件に従って数列 ${a_n}$ を定義するとき,$\displaystyle \sum_{n=1}^{2025} a_n$ の取りうる値の総和を求めよ.
・すべての正整数 $n$ に対し,$a_n$ は $0$ 以上の整数である.
・すべての正整数 $n$ に対し,$a_{2^n}=a_2^n$ を満たす.
・すべての正整数 $n$ に対し,$\displaystyle \sum_{k=1}^{n} a_k = \sum_{k=n+1}^{2n} a_k$ を満たす.

解答形式

半角数字で入力してください。

エイト・ルーク

kitotch 自動ジャッジ 難易度:
3月前

2

問題文

チェス盤(8*8)に8つのルークを置く。
このとき、どのルークもほかのルークの利きに置いてはいけない。
このような条件を満たすルークの置き方(回転、鏡像は別とみなす)の場合の数を求めよ。

解答形式

半角数字でお答えください。