$ a!=b^{2}+2となる自然数a,整数bについて、 $ $ k(a,b)=a+bとおく。 $ $ k(a,b) の値として考えられるものは何個あるか。 $
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$ f(x)= 2^{2^{x}x}-1 $ とする。このとき、 $ f(1)+f(2)+f(3)+・・・+f(2024)=A $ とすると、Aの一の位の数字は何になるか。
$ f(x,n)=x^{2^{n+1}}-x^{2^{n}}とおく。 $ $ f(a,b) と f(c,d) の最大公約数として 考えられるものの最小値を求めよ。 $ $ ただし、a,b,c,dはいずれも2以上の自然数で、a\neq b \neq c \neq d とする。 $
$a$を定数とする。 このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。
a=𓏸𓏸というふうに解答してください。 また、全て半角で解答してください。 答えのみ入力してください。
$4桁の数Xについて、Xの各位の数字を1桁ずつ足し合わせた和をk(X)とおく。$ $4桁の数A,Bにおいて$$$ \begin{eqnarray} \frac{k(A)}{k(B)}=\frac{A}{B}=n \end{eqnarray} $$$ (nは2以上の整数)$ $のとき、Aの取りうる値は何個あるか。$ 半角数字のみで答えよ
5進数で表された[2024]を2進数で表せ。
数字のみでOK
$p$ を素数,$n$ を自然数とする。$\log_{p}(n!)$ が有理数となるとき,その値を求めよ。
$\log_{p}(n!)$ の値をすべて求めてください。解答は小さい順に1行目から答えてください。
4x4のマス目を境界線で区切り、14分割する方法は何通りありますか?
半角数字で入力してください。
√5の小数部分をaとするとき、a-√5の値を求めよ。
数字や符号は半角で解答してください
正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.
0以上180未満の整数を半角数字で解答してください。 ただし度数法で、単位を付けずに解答してください。
図の条件の下で、青で示した角の大きさを求めてください。
解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。 単位("度・°"など)はつけないでください。
半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。
半角数字で解答してください。
2つの正方形が図のように配置されています。赤と青の面積の差が$11$のとき、紫と橙の面積の差を求めてください。