holoXのずのーである『博衣こより』はとある実験に成功し、同じholoXのメンバーである『ラプラス・ダークネス』『鷹嶺ルイ』『沙花叉クロヱ』『風真いろは』と自分自身をそれぞれ $6$ 人ずつに分身させてしまいました. 分身させた計 $30$ 人のうち $6$ 人を選び,下記の条件に沿って左右 $1$ 列に並べる方法は何通りありますか.
半角整数で入力してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$\triangle{ABC}$ について直線 $BC$ 上に $W,B,C,E$ の順と並ぶように点 $W,E$ を取ると以下のことが成立しました.
このとき $\triangle{BAE}$ の外心を $O$ とすると,互い素な正整数 $a,b$ を用いて, $$\triangle{BAE}:\triangle{WAO}=a:b$$ と面積比が表せるので $a+b$ の値を解答してください.
等式 $$3kp-35p=q^2+2^p$$を満たすような素数 $p,q$ と正整数 $k$ の組 $(p,q,k)$ を考えます.$p+q+k$ として考えられる値のうち小さい方から $5$ つの総和を解答してください.
点 $O$ を中心とする半径 $1$ の円と,その円に内接する正 $169$ 角形 $A_1A_2\cdots A_{169}$ が与えられています.この正 $169$ 角形の頂点のうち,$A_{169}$ を除いた $168$ 頂点から $3$ 点を選ぶ方法は ${}_{168}\mathrm{C}_3$ 通り考えられますが,それらすべてについて選んだ $3$ 点を頂点とする三角形の垂心と $O$ の距離の $2$ 乗の総和を解答してください.(総和の $2$ 乗ではないことに注意してください.)
$n$ を $3$ 以上の正整数とします.正 $n$ 角形から $3$ 頂点選んでそれらを $A,B,C$ としたとき,$\angle ABC =44.5^\circ$ となりました.$n$ として考えられる最小の値を解答してください.
四角形 $ABCD$ について,線分 $BD$ 上に点 $E$ を取ると,$AE=BD$ で,角 $EAD=$ 角 $AED=$ 角 $EBC=$ 角 $BCE=40°$ が成り立ちました.このとき角 $BDC$ は何度ですか?
半角数字で解答してください.
$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を $$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.
たとえば, $$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.
半角英数にし、答えとなる正整数値を入力し解答して下さい.
素数 $p$ を用いて表される整数 $p-4, p^2-6, p^3-26$ が全て素数となるような $p$ の総和を求めよ。
算用数字で解答してください。
『猫又おかゆ』の目の前に左右 $1$ 列に $9$ 個のおにぎりが並んでいます.おにぎりの種類は鮭,うめ,おかかの $3$ 種類のうちいずれかです.並んでいるおにぎりについて,『猫又おかゆ』は次のことに気づきました.
『猫又おかゆ』の目の前にあるおにぎりの種類の並びとして考えられるものは何通りありますか.
四角形 $ABCD$ と三角形 $XYZ$ は以下の条件を満たします. $$AD=505, \hspace{1pc} BC=507, \hspace{1pc} AB=CD, \hspace{1pc} \angle ABC=60^\circ, \hspace{1pc} \angle DCB=80^\circ$$ $$YZ=1, \hspace{1pc} XY=XZ, \hspace{1pc} \angle YXZ=40^\circ$$ このとき, 四角形 $ABCD$ の面積は三角形 $XYZ$ の面積の何倍ですか.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記: 若干日本語がおかしかったため編集しました. 解答には影響はないと思われます. 一応ヒント2に元の問題文を残してあります. 以上, よろしくお願いします.
$2025^{2025}$の正の約数のうち、7で割ると1余るものの個数を求めよ。
答えは整数なので、半角数字で答えてください。
正方形 $ABCD$ の辺 $CD$ 上に点 $E$ をとり,直線 $AE$ と $BC$ の交点を $F$,$AE$ と $BD$ の交点を $G$ とすると,$AG:EF=1:2$ が成立しました.このとき,角 $AFB$ は何度ですか?ただし,解答すべき値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください.
角 $A=90°$ ,角 $B=90°$ ,角 $C=120°$ なる四角形 $ABCD$ があります.辺 $AB$ 上に点 $E$,辺 $BC$ 上に点 $F$ をとると,$BF=9,FC=2,CD=8$ ,角 $EFD=120°$ が成り立ちました.$AE:EB$ を求めてください.ただし,求める比は互いに素な正整数 $a,b$ を用いて $a:b$ と表されるので $a+b$ の値を解答してください.
半角数字で解答して下さい.