交わらない$2$円$O_1,O_2$は直線$m$に同じ側で接しており、その反対側に交わらない$2$円$O_3,O_4$が直線$m$に接している。円$O_x(x=1,2,3,4)$の半径を$x$、直線$m$との接点を$P_x$とすると、点$P_1,P_4,P_2,P_3$がこの順に並んだ。$P_1P_4=P_2P_3=5,P_2P_4=3$のとき、四角形$O_1O_2O_3O_4$の面積を求めよ。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
純循環小数(少数第一位から循環する循環小数)$x$を定義域とする関数$f(x)$を、$x$の循環部とする。ただし、循環部に0が現れ、それより大きい位に0以外の数がない場合、その0は無視するものとする。$f(\frac{5}{33})=15,f(\frac{4}{3333})=12$といった具合である。 正整数$n$に対して、$n<m<2025^{2025}$なる正整数$m$であって、$n$の値にかかわらず以下の等式を満たすものはいくつあるか。 $$f(\frac{n}{m})=(m−2)n$$ 必要ならば、$$0.30102<\log_{10}2<0.30103, 0.47712<\log_{10}3<0.47713$$ を用いてよい。
$AB=1$の正十二角形$ABCDEFGHIJKL$がある。$KD$と$CJ$、$AF$と$DK$、$AF$と$DI$、$DI$と$EJ$、$AH$と$EJ$、$AH$と$CJ$の交点を、それぞれ$M,N,O,P,Q,R$とする。六角形$MNOPQR$の面積を求めよ。
互いに素な正整数$a,b,c$及び平方因子をもたない正整数$d$を用いて、$\frac{b−c\sqrt{d}}{a}$と表せます。$a+b+c+d$を解答してください。
円$C_1:x^2+(y−\sqrt{6})^2=2$及び円$C_1$と$x$軸について対称な円$C_2$をとる。さらに、2点$(0,\sqrt{6}−\sqrt{2}),(0,−\sqrt{6}+\sqrt{2})$を通り$x$軸に垂直で、原点を中心とする円$C_3$をとり、円$C_2$の中心を通り$xy$平面に垂直な直線を$l$とする。円$C_3$を直線$l$周りに$360°$回転させてできる立体の体積を求めよ。
正整数$a,c,e$と平方因子をもたない正整数$b,d$を用いて$(a\sqrt{b}−c\sqrt{d})π^e$と表せるので、$a+b+c+d+e$を解答してください。
$10^{n^n}$を$998$で割った余りが$512$となる最小の自然数$n$を求めよ。
SKG学院では,5×5のマス目を使い,とあるゲームが行われている. ゲームのルールは以下である. ・お客さんと生徒がじゃんけんをする.勝った方が先手,負けた方が後手となる. この時,あいこは考えないものとする. ・先手は黒の碁石,後手は白の碁石を,マスの上に交互に置いていく. ・同じマスには碁石は一つまでしか置けない. ・マス目が全て埋まった時,各行について次の条件を満たすものを特別な行と呼び,その個数を数える. 特別な辺:ある行の5マスを見た時,お客さんが置いた碁石の個数が偶数個であるもの. ・特別な行の個数が偶数であればお客さんの勝ち,奇数であれば生徒の勝ちとなる.
お客さんが勝つ確率をA,お客さんが勝つ時の碁石の置き方の総数をBとする. A×Bの値を求めなさい. 但し,回転して重なるような碁石の置き方は区別しないとする.
半角数字で入力して下さい.
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許すとき、7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。 (似た問題を投稿しています。解答する場所を間違えないように注意してください。)
互いに素な正整数p,qを用いてp/qと表せるため p+qを解答してください。
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許さないとき、7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。
互いに素な正整数q,pを用いて p/q と表せるため、p+qを解答してください。
次を満たすような正整数の組 $(x,y,z)$ をすべて求めてください. $$2^x+9^y+2025=2009^z-65-28$$
簡単な証明をお書き下さい.
聖くんと光くんはトランプゲームを行うことにした.
なお,$1$ から $13$ までの数字が書かれたトランプをそれぞれ四枚ずつ用いる.
ルールは以下の通り. - 聖くんはトランプを $1$ 枚から$3$ 枚まで引くことができる. - 光くんは幾つかの質問をして,聖くんが引いたトランプに書かれた数字を回答する.
光くん「書かれた数字の和を教えて」 聖くん「$31$ だよ」 光くん「うーん難しいな……なにかヒントくれない?」 聖くん「トランプに書かれた数字の積を求めたら、各位の和は $2$ になったよ」
光くんが引いたトランプの目として考えられるものを全て求めなさい。
答えが1,2,4の場合は(1,2,4)と入力して下さい.(小さい順に)
SKG学院の文化祭では,1から10の目が一つずつ書かれた十面体の歪んだダイスを配布しています.このダイス十個に$1$から$10$までの番号をつけることにしました. ここで以下のような事実が分かっています. また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.
・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.
この十個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.
半径$66$の円に内接する正$66$角形の対角線(各辺も含む)の長さの$66$乗和を求めて下さい. 但しある長さの$𝑛$乗和とは,与えられた長さ$𝑃_1,𝑃_2…$について$𝑃_1^n + 𝑃_2^n …$を指します.
答えは非常に大きくなる恐れがあるので,$2025$で割った余りを求めて下さい. 4/26 19:55 誤った答えが入力されていました。大変申し訳ありません。
次の虫食い算について,SUKEN=?
半角数字で入力して下さい. 但しS≠E≠I≠K≠O≠U≠Nとします.