$1$ 以上 $15$ 以下の整数の組 $(a, b, c)$ であって $$(2a + 2b + 2c - 33)^2 = (|2a - 9| + |2b - 11| + |2c - 13|)^2$$
をみたすものは全部でいくつありますか?
半角英数にし,答えとなる非負整数値を入力し解答して下さい.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$10^{12}$ 以下の正整数であって,$9$ の倍数または $10$ 進法表記した時どこかの桁に $9$ が現れる数はいくつありますか?
非負整数で入力してください。
正整数 $x, y$ が $$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$ をみたすとき,$x$ のとり得る最小の値を求めて下さい.
半角英数にし、答えとなる正整数値を入力し解答して下さい.
OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732) のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です. 4bにそぐわないとしてOMCへの使用には至りませんでしたが,せっかくなのでよければ解いてみてください.
$AB=5, AC=7$ なる三角形 $ABC$ について,$A$ から $BC$ に下ろした垂線と円 $ABC$ の交点を $D(\neq A)$,$BC$ の中点を $M$ とします.$\angle AMD=90^{\circ}$ であるとき,$BC$ の長さの四乗を求めてください.
一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります. このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.
ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.
求めるべき値は非負整数値として一意に定まるので,これを解答してください.
$BC=123, \angle B=90^{\circ}$ なる三角形 $ABC$ について,内心を $I$,$\angle A$ 内の傍心を $J$ とすると,四角形 $ABIC$ は三角形 $BCJ$ よりも面積が $246$ 大きくなりました.$AB$ の長さを求めてください.
以下によって定義される整数 $N$ を素数 $13907$ で割った余りを求めてください.$$N=\prod_{k=1}^{13906} (k^2+2025)$$
13906以下の非負整数で解答してください
下図は、2つの正方形と円を組み合わせた図形です。点(●)は小さい正方形の辺を4等分する点で、円は大きい正方形に内接しています。大きい正方形の面積が60㎠のとき、小さい正方形の面積は何㎠ですか。
半角数字で入力してください。 例)10
$A,B$を全ての要素が$2$以上$2024$以下の自然数からなる集合で$A$と$B$の和集合の要素数が$2023$個であるものとします。$A,B$から要素を自由に$1$つずつ選ぶとき、どのように要素を選んでもその$2$つの数の最大公約数が$1$になるような$A,B$の組$(A,B)$の個数を求めてください。ただし、必要ならインターネットにある素数表を検索して用いても構いません。また、空集合も条件を満たすものとしてください。
問題を少し変更いたしました。
答えは正の整数$n$を用いて$2^n$と表せますから$n$を半角で1行目に入力してください。
OMCB030-C(https://onlinemathcontest.com/contests/omcb030/tasks/4587) のもう一つの案です.
$2$ 以上の整数 $n$ に対し,$n$ が持つ相異なる素因数の総積を $\mathrm{rad}(n)$ で表します.例えば,$\mathrm{rad}(18)=2×3$ です.次の等式を満たす $2$ 以上の整数 $m$ の総和を求めてください.
$$m=\mathrm{rad}(m)+240$$
$2$ 行 $2025$ 列のマス目の各マスに $1$ 以上 $4050$ 以下の整数を $1$ つずつ書き込む方法であって, 以下の条件を満たす書き込みを一筆書きと呼びます.
各一筆書きに対して,$2025$ が $i$ 行 $j$ 列目に書き込まれているとき,その一筆書きのスコアを $i+j$ で定めます.全ての一筆書きに対して,そのスコアを足し合わせた総和を求めてください.
$10^{n^n}$を$998$で割った余りが$512$となる最小の自然数$n$を求めよ。
正の実数からなる $2$ つの数列 $a_1,a_2,...$ と $b_1,b_2,...$ があり, 任意の整数 $n$ について以下を満たしている. $$ (a_{n+1},b_{n+1})=\left(\frac{a_n}{2},b_n+\frac{a_n}{2}\right)または(a_{n+1},b_{n+1})=\left(a_n+\frac{b_n}{2},\frac{b_n}{2}\right)が成立する. $$ $(a_1,b_1)$ が $(7,11)$ であるとき, $a_{100}$ としてあり得る値の中で $2025$ 番目に小さいものを求めよ.
答えの値を $x$ としたとき, $2^{100}x$ の値を解答してください. 参考:$2^{100}=1267650600228229401496703205376$