$$[(5√2)+7)^{2011}]を14,49,50でそれぞれ割った余りの合計を求めろ$$ ただし[x]でxの以下の最大の整数とする。 また、順に余りをx,y,zとしたとき0≦x≦13,0≦y≦48,0≦z≦49とする
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
非負整数r,sを用いて $$334r+2025s=m$$の形に表せない正の整数mの個数を求めろ
$AB\lt AC$ なる鋭角三角形 $ABC$ があり,$BC$ の中点を $M$ とします.また,直線 $AB$ に $B$ で接し $M$ を通る円を $\Gamma_1$ ,直線 $AC$ に $C$ で接し $M$ を通る円を $\Gamma_2$ とし,直線 $AM$ と $\Gamma_1,\Gamma_2$ との交点のうち $M$ でない方をそれぞれ $D,E$ ,$DE$ の中点を $F$ ,$\Gamma_1$ と $\Gamma_2$ の交点を $G$ とした時,以下が成り立ちました. $$ AM:MG=3:1,\quad AC=24,\quad CF=10 $$ この時,$BC^2$ の値を求めてください.
例)半角数字で入力してください。
縦19区画、横28区画のグリッドがある 右折(↑→)と左折(→↑)両方の数の和が10である時 最短経路は何通りあるか?
非負整数で答えろ
$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて, $$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$ の総和を $f(n)$ とします. $f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.
ある数$N$は$714$進法で$\underbrace{1818\dots1818}_{\text{1430個}}0$と表されます。$N$の素因数に含まれない最小の素数は何でしょう?
半角数字で入力してください。
凸四角形 $ABCD$ において, $$AB=BD=7 ,BC=5,CD=4, 2∠ACB+∠ACD=180°$$
が成り立ちました.このとき,線分 $AD$ の長さは互いに素な自然数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ を解答してください.
半角数字で解答してください. 不備等あれば教えて下さい。
$b−a$ が $3$ の倍数で,$a+b+c=2024$ を満たす非負整数の組 $(a,b,c)$ すべてについて, $$\dfrac{2024!}{a!b!c!}×3^a×3^b×4^c$$ を足し合せた値を $S$ とします.$S$ の各桁の和を求めてください.
半角数字で解答してください. 不備等あれば教えて下さい.
問題の数値設定に不備があったため、数値設定を変更します。申し訳ありません。(三角形 $DEH$ の面積を $9$ から $3$ に変更しました。)
鋭角三角形 $ABC$ の垂心を $H$, 外心を $O$ とします. また, 直線 $BH$ と線分 $AC$ の交点を $D$, 直線 $CH$ と線分 $AB$ の交点を $E$ とします. そして, 線分 $DE$ の中点を $N$, 直線 $HN$ と直線 $AO$ の交点を $X$ とします. このとき, $A, X, O$ はこの順に並び, $AX = 3, XO = 5$ が成立しました. また, 三角形 $DEH$ の面積が $3$ であったとき, 三角形 $ABC$ の面積を求めてください.
答えは, 正整数 $a, b$ を用いて $\sqrt{a} + b$ と表されるので, $a+b$ の値を半角数字で解答してください.
鋭角三角形 $ABC$ について, 線分 $BC$ 上に点 $D$ を取り, 三角形 $ABD$ の垂心を $H_1$, 三角形 $ADC$ の垂心を $H_2$ とします. すると, $BD = DC = H_1 H_2 = 10$, $H_1 D : H_2 D = 2 : \sqrt{10}$ が成立しました. このとき, 三角形 $ABC$ の面積としてあり得る値の総積を解答してください.
答えは正整数になるため, その値を半角数字で解答してください.
半径が $4$ の円 $\Omega$ 上に2点 $A, B$ を直径をなさないようにとり,$A, B$ における $\Omega$ の接線の交点を $C$ とします.三角形 $ABC$ の垂心を $H$ とし,3点 $A, C, H$ を通る円と $\Omega$ の交点を $D$ とすれば,$AB=CD$ が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.
追記:$D\neq A$ とします.
半角数字で解答してください.
三角形 $ABC$ の線分 $AB$ 上に点 $D$, 線分 $DC$ 上に点 $E$, 線分 $AC$ 上に点 $F$ を取ったところ, 以下が成立しました. ・ $\angle AED = \angle ABE = \angle EFC = 60^\circ$ ・ $\angle EAC = 19^\circ$ ・$DF = CF$ このとき, $\angle EBC$ の大きさは, 度数法で $N^\circ$ と表されるため, $N$ を解答してください.
三角形 $ABC$ について,$\angle A$ の二等分線と $BC$ の交点を $D$,円 $ABD$ と $AC$ の交点を $E$,円 $BEC$ と $AB$ の交点を $F$ とし,$AD$ と $FC$ の交点を $P$ とするとき,$AF=2, AC=3, PE=1$ が成立しました.$AB$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.