⑨の倍数と⑨が付く数字のときアホになるチルノ

simasima 自動ジャッジ 難易度: 数学
2025年3月6日19:42 正解数: 7 / 解答数: 9 (正答率: 77.8%) ギブアップ不可

全 9 件


おすすめ問題

この問題を解いた人はこんな問題も解いています

競技冨安四発太鼓

simasima 自動ジャッジ 難易度:
7月前

6

問題文

冨安四発太鼓保存会は冨安四発太鼓の競技化を進めており、全ての曲の長さは $1$ 単位時間と定められました。
冨安四発太鼓のスコアは次のように定められています。
曲が開始した時刻を $0$ とし、太鼓が叩かれた時刻を小さい順に $t_1,t_2,t_3,t_4$ とした時に、スコアは $t_1^{39}t_2^{71}t_3^{94}t_4^{104}$ と定められます。
フニャオ君は曲の中で太鼓をランダムに $4$ 回叩きます。正確には区間 $[0,1]$ から実数を一様ランダムに選ぶという行為を独立に $4$ 回行い選ばれた実数を小さい順に並べ$t_1,t_2,t_3,t_4$ とした時、時刻 $t_1,t_2,t_3,t_4$ に太鼓を叩きます。
この時、フニャオ君のスコアの期待値を求めてください。

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので $a+b$ の値を求めてください。

Incircles

simasima 自動ジャッジ 難易度:
7月前

9

問題文

周長が $10^5$ であり全ての辺の長さが整数であるような三角形の内接円の面積の総和を求めてください。

厳密な問題文
$a+b+c=10^5$ が成り立ち尚且つ各辺の長さが $a,b,c$ である三角形が存在するような順序付いた正整数の組 $(a,b,c)$ 全てについて各辺の長さが $a,b,c$ であるような三角形の内接円の面積の総和を求めてください。

解答形式

答えは互いに素な正整数 $a,b$ を用いて$\frac{a}{b}\pi$ と表せるので、$a+b$ の値を解答してください。

loop

simasima 自動ジャッジ 難易度:
7月前

15

問題文

集合 $\{ 1,2,...,20 \}$ を $X$ とおきます。
全射である関数 $f:X \to X$ であって以下の条件を満たすものはいくつありますか?
$n< 7$ を満たす正整数全てについて、ある正整数 $k$ が存在して $f^k(n)>11$ が成立する。
補足: $f^n$ は $f$ の $n$ 回合成です。

解答形式

非負整数で解答してください。

10月前

27

問題文

$1$ 以上 $15$ 以下の整数の組 $(a, b, c)$ であって
$$(2a + 2b + 2c - 33)^2 = (|2a - 9| + |2b - 11| + |2c - 13|)^2$$

をみたすものは全部でいくつありますか?

解答形式

半角英数にし,答えとなる非負整数値を入力し解答して下さい.


問題文

正整数 $3$ つの集合 $S$ であって,以下を同時にみたすものは全部でいくつありますか?

  • $S$ に属する $3$ 数を十進数表記したときすべて $3$ 桁であり,それぞれの桁に $1, 2, ..., 9$ がすべて $1$ 回ずつ現れる.
  • $S$ から相異なる $2$ 数 $a, b$ を選ぶ方法であって,$a + b = 1110$ をみたすものが存在する.

解答形式

半角英数にし,答えとなる非負整数値を入力し解答して下さい.

1100

shakayami 自動ジャッジ 難易度:
6月前

28

問題文

$a, b$ を非負整数とします。xy平面上の点 $(0, 0)$から点 $(a, b)$まで、$x$ 軸正方向に1進むか、$y$ 軸正方向に1進むかで到達するための道の数を $C(a, b)$ とします。

$0 \leq a < 1100 $ かつ $0 \leq b < 1100 $ であるような非負整数組 $(a, b)$ であって、$C(a, b)$ が奇数であるようなものの個数を答えてください。

解答形式

答えは非負整数なので,その数値を回答してください.OMCと同じです.

孤独な頂点

kusu394 自動ジャッジ 難易度:
18月前

4

問題文

正八角形 $P_1P_2P_3P_4P_5P_6P_7P_8$があり, 各頂点に $0,1,2$ のいずれかの数字を $1$ つずつ書き込みます.
頂点 $P_i$ に書かれた数字のことを, $f(P_i)$ で表すこととします.

正八角形の頂点 $P_i$ が"孤独な頂点"であるとは, $f(P_i) \neq f(P_{i-1})$ かつ $f(P_i) \neq f(P_{i+1})$ を満たすことと定義します.
ただし, 便宜上 $f(P_0)=f(P_8),\ f(P_9)=f(P_1)$ であるとします.
また, 正八角形の"孤独な頂点"の個数を"孤独度"と呼ぶことにします.

正八角形の頂点に数字を書き込む方法は $3^8$ 通りありますが, それらすべてについて"孤独度"の総和を求めてください.

例:
$$(f(P_1), f(P_2), f(P_3), f(P_4),f(P_5), f(P_6), f(P_7), f(P_8)) = (0,1,2,1,2,1,2,0)$$ のときは $P_2,...,P_7$ が"孤独な頂点"となるので, この数字の書き込み方の"孤独度"は $6$ となります.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

2×2 in torus

simasima 自動ジャッジ 難易度:
7月前

8

問題文

じーえむ君は $n×n$ の盤面のマス目に $2\times 2$ の正方形タイルを重ならないように出来るだけ多く入れたいです。
ただし、盤面はトーラスになっています。上から $x$ 行目 左から $y$ 列目のマスを $(x,y)$ と表すとき、左上のマスが $(x,y)$ であるようなタイルは $(x,y),(x+1( mod \ n),y),(x,y+1( mod \ n)),(x+1( mod \ n),y+1( mod \ n))$ の $4$ マスを占有します。
じーえむ君が入れることが出来るタイルの数の最大値を $N$ とする時、じーえむ君がタイルを $N$ 個入れる方法は何通りありますか?
ただし、回転や平行移動などで一致する入れ方は区別して数えてください。

上記の問題は $n$ が $4$ で割って $1$ 余る数である時上手く解くことが出来ます。
$n= 333,1001,7777$ のそれぞれについて上記の問題を解いてその答えの総和を解答してください。

解答形式

非負整数で解答してください。

突き刺す直線

kusu394 自動ジャッジ 難易度:
16月前

3

問題文

座標平面において $A(0,4000),B(-3000,0),C(3000,0)$ をとります.次の条件をすべて満たすような直線 $\ell$ として考えられるものは何通りありますか.

  • $\ell$ と直線 $AB$ は点 $P$ で交わり, $P$ の $x$ 座標は $-3000$ より大きく $0$ より小さい.
  • $\ell$ と直線 $AC$ は点 $Q$ で交わり, $Q$ の $x$ 座標は $3000$ より大きい.
  • 線分 $BP$ の長さと線分 $CQ$ の長さは整数値である.
  • $\ell$ と $x$ 軸の交点を $R$ とするとき,$\triangle RPB$ と $\triangle RQC$ の面積は等しい.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

JMO2025yo-6?

simasima 自動ジャッジ 難易度:
7月前

7

問題文

正の実数からなる $2$ つの数列 $a_1,a_2,...$ と $b_1,b_2,...$ があり, 任意の整数 $n$ について以下を満たしている.
$$
(a_{n+1},b_{n+1})=\left(\frac{a_n}{2},b_n+\frac{a_n}{2}\right)または(a_{n+1},b_{n+1})=\left(a_n+\frac{b_n}{2},\frac{b_n}{2}\right)が成立する.
$$
$(a_1,b_1)$ が $(7,11)$ であるとき, $a_{100}$ としてあり得る値の中で $2025$ 番目に小さいものを求めよ.

解答形式

答えの値を $x$ としたとき, $2^{100}x$ の値を解答してください.
参考:$2^{100}=1267650600228229401496703205376$

階乗のシグマと合同式

sulippa 自動ジャッジ 難易度:
5月前

2

問題

$p$を$3$より大きい素数とする
$S=\sum_{k=1}^{p-2} k \cdot (k!) \cdot ((p-k-1)!)$ 
を$p$で割った余りを求めよ。

解答形式

解答は既約分数で表せるので、
1行目に分子、
2行目に分母
を半角で書いてください
分母は1になる場合も書いてください

第8問

sulippa 採点者ジャッジ 難易度:
5月前

2

設問8

正の数からなる数列 ${a_n}$ が $a_1 > 0$ および漸化式 $a_{n+1} = a_n + \frac{1}{a_n^2}$ ($n \ge 1$) を満たすとき、極限値 $\lim_{n \to \infty} \frac{a_n}{\sqrt[3]{3n}}$ を求めよ。


解答形式