OMC没問1

Kta 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月11日10:53 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ数: 0

全 3 件

回答日時 問題 解答者 結果
2025年10月31日22:31 OMC没問1 poinsettia
正解
2025年3月16日13:07 OMC没問1 Nyarutann
正解
2025年3月12日3:31 OMC没問1 natsuneko
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

OMC没問2

Kta 自動ジャッジ 難易度:
8月前

3

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。

幾何問題12/12

miq_39 自動ジャッジ 難易度:
23月前

5

問題文

三角形 $ABC$ の辺 $AB , AC$ (端点を除く)上にそれぞれ点 $P , Q$ があり,直線 $BC , PQ$ は,半直線 $BC$ 上の点 $R$ で交わっています.また,線分 $BC , PQ$ 上にそれぞれ点 $M , N$ があり, $\dfrac{BM}{MC} = \dfrac{PN}{NQ} = \dfrac{BR}{RC}$ を満たしています.いま,直線 $AN$ と $\triangle ABC$ の外接円の交点のうち,$A$ でない方を $X$ としたところ,$\angle MNR = \angle MXR = 90^{\circ}$,$\angle BXM = 63^{\circ}$ がそれぞれ成り立ちました.このとき,$\angle BAC$ の大きさを度数法で求めてください.

解答形式

半角数字で解答してください.

接線の交点

hkd585 自動ジャッジ 難易度:
3年前

7

問題文

$\triangle ABC$の辺$AB$上に点$D$が,辺$AC$上に点$E$がそれぞれある.また,辺$BC$上に2点$P,Q$があり,4点$B,P,Q,C$はこの順に並んでいる.
$\triangle BDP$の外接円の$B$における接線と,$\triangle CEQ$の外接円の$C$における接線とが点$F$で交わっている.
$AD=2,DB=4,AE=5,EC=3,BP=1,PQ=10,QC=1$のとき,$AF=\dfrac{a\sqrt{b}}{c}$である.ただし,$a,b,c$はいずれも正の整数であり,$a,c$は互いに素である.また,根号の内部は十分簡単になっている.
$a+b+c$の値を求めよ.

解答形式

半角数字で解答してください.

整数問題(1)

tsukemono 自動ジャッジ 難易度:
15月前

8

問題文

$504$と自然数$x$との最大公約数を$g$, 最小公倍数を$l$とする。$504$の正の約数の個数を$n$としたとき、$g$の正の約数の個数は$\frac{n}{3}$、$l$の正の約数の個数は$\frac{9n}{2}$であった。$x$の素因数が$2,3,5,7$であるとき、$l$の値を求めよ。

解答形式

半角算用数字で答えてください。

Reverse digits (学コン2024-12-3)

Lim_Rim_ 自動ジャッジ 難易度:
7月前

6

問題文

10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.

備考

本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.

OMCで不採用にされたやつNo.1

kinonon 自動ジャッジ 難易度:
2月前

6

問題文

三角形 $ABC$ において,角 $A,B,C $の傍接円の半径をそれぞれ $r_A,r_B,r_C$ とし,内接円の半径を $r $とする.このとき,三角形 $ABC$ が以下の条件を満たすとき$r_A\cdot r_B\cdot r_C \cdot r$の最大値を求めよ.
$$BC=28,∠BAC=60 $$

解答形式

自然数となるので、その値を入力してください

自作問題7

iwashi 自動ジャッジ 難易度:
8月前

1

問題文

$m,m'\geq1,n\geq0$を満たす任意の整数$m,m',n$に対し$,\ $$A(m,n)$は
$$
A(1,n) = \frac{1}{n!},\qquad A(m+m',n) = \sum_{k=0}^{n}A(m,k)A(m',n-k)
$$を満たす。$1 \leq m \leq 100,0 \leq n \leq 100$を満たし$,\ $かつ$A(m,n)$が整数であるような整数$m,n$について$,\ $積$m\times n$の総和を求めよ。

確率

kiriK 採点者ジャッジ 難易度:
12月前

3

三角形ABCがある。初めに頂点ABCいずれかの頂点にランダムに駒を1つ置き、
操作nを繰り返し行うことで駒を移動させる。

$操作n:$$ カードがそれぞれn,n+1,n+2枚入った箱ABCを用意する。$$それぞれの箱にあたりの
カードが3,4,2枚入っている。$$
頂点Aにいる時は、まず箱BかCをランダムに選び、$$選んだ箱からカードを1枚引く。$$箱Bであたりを引くと頂点Aにそのまま、$$箱Cであたりを引くと頂点Bに、$$どちらの箱においてもハズレを引くと頂点Cに移動する。$$頂点Bにいる時は、箱Aからカードを1枚引き、$$あたりをひくと頂点Aに、$$ハズレだと頂点Cに移動する。
$$頂点Cにいるときは何もしない。$

$操作3→操作4→操作5→・・・→操作kを行った時(3 \leq k)頂点Aに駒がいる確率を求めよ。$

Triangle T

Lim_Rim_ 自動ジャッジ 難易度:
7月前

7

問題文

三角形 $T$ の一つの辺の長さは平方数で,残りの辺の長さは素数であるとする.また,$T$ の面積は整数で,外接円の直径は素数であるとする.$T$ の各辺の長さを求めよ.

解答形式

$T$の3辺の長さの総和としてありうる値の総和を解答してください。(論証は採点できないので、解説を参照してください。)

備考

2018年3月の大学への数学「読者と作るページ」に掲載された問題です。

連続する整数の積

noname 自動ジャッジ 難易度:
8月前

9

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。

暁山瑞希 誕生日

shakayami 自動ジャッジ 難易度:
2月前

8

三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.

$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.

自作問題No.1

Tehom 自動ジャッジ 難易度:
17月前

8

問題文

凸四角形$ABCD$は$\angle{BAC}$$=$$12^\circ$$,$$\angle {CAD}$$=$$30^\circ$$,$$\angle{ACD}$$=$$24^\circ$$,$$AB=CD$を満たします.このとき、$\angle{ADB}$の値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$度となるので、積$ab$の値を求めてください.

解答形式

半角数字で解答してください.