非常に細長いガムテープがあります。このガムテープは $M$ 個の区画に分かれています。ここで、$M$ は非常に大きい整数です。
はじめ、ガムテープには何も描かれていません。じーえむ君は $M$ 回以下の操作を行い、絵を描きます。
操作が終わった後黒く塗られている区画の数を $X$ とします。
$M$ が限りなく大きくなるときの $\frac{X}{M}$ の期待値の極限を求めてください。
答えとなる値を $p$ として $10^{10}p$ の整数部分を求めてください。
なお、以下の定数表を参考にしても構いません。
https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%AE%9A%E6%95%B0
この問題を解いた人はこんな問題も解いています