KOTAKE杯004(C)

MrKOTAKE 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月7日21:00 正解数: 16 / 解答数: 24 (正答率: 66.7%) ギブアップ不可
この問題はコンテスト「KOTAKE杯004」の問題です。

全 24 件

回答日時 問題 解答者 結果
2025年3月16日14:39 KOTAKE杯004(C) Nyarutann
正解
2025年3月12日6:25 KOTAKE杯004(C) shoko_math
正解
2025年3月12日6:22 KOTAKE杯004(C) shoko_math
不正解
2025年3月10日12:37 KOTAKE杯004(C) katsuo_temple
正解
2025年3月9日22:33 KOTAKE杯004(C) Kta
正解
2025年3月7日22:09 KOTAKE杯004(C) Tehom
正解
2025年3月7日21:58 KOTAKE杯004(C) sgmfromjapan
不正解
2025年3月7日21:58 KOTAKE杯004(C) sgmfromjapan
不正解
2025年3月7日21:44 KOTAKE杯004(C) nepia_nepinepi
正解
2025年3月7日21:39 KOTAKE杯004(C) Mid_math28
不正解
2025年3月7日21:36 KOTAKE杯004(C) GaLLium
正解
2025年3月7日21:33 KOTAKE杯004(C) uran
正解
2025年3月7日21:31 KOTAKE杯004(C) GaLLium
不正解
2025年3月7日21:30 KOTAKE杯004(C) miq_39
正解
2025年3月7日21:30 KOTAKE杯004(C) miq_39
不正解
2025年3月7日21:22 KOTAKE杯004(C) kinonon
正解
2025年3月7日21:21 KOTAKE杯004(C) kinonon
不正解
2025年3月7日21:19 KOTAKE杯004(C) offbeat
正解
2025年3月7日21:18 KOTAKE杯004(C) araro
正解
2025年3月7日21:17 KOTAKE杯004(C) sta_kun
正解
2025年3月7日21:14 KOTAKE杯004(C) offbeat
不正解
2025年3月7日21:13 KOTAKE杯004(C) Furina
正解
2025年3月7日21:08 KOTAKE杯004(C) natsuneko
正解
2025年3月7日21:05 KOTAKE杯004(C) pomodor_ap
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

KOTAKE杯004(B)

MrKOTAKE 自動ジャッジ 難易度:
2月前

22

問題文

垂心を$H$とする鋭角三角形$ABC$があり
$AB \cdot CH=30,BC \cdot AH=28,CA \cdot BH=26$
が成立したので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯004(A)

MrKOTAKE 自動ジャッジ 難易度:
2月前

24

問題文

$AB<BC$なる鋭角三角形$ABC$があり,$B$から$AC$におろした垂線の足を$D$とし,線分$BC$の中点を$M$とする.三角形$ABC$の外接円上に点$E,F$をとると$4$点$EDMF$はこの順に同一直線上に存在し,$DE=6,MF=8,CD=15$であったので線分$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯004(D)

MrKOTAKE 自動ジャッジ 難易度:
2月前

14

問題文

$AB<AC$の三角形$ABC$があり,内心を$I$,直線$AI$と三角形$ABC$の外接円の交点を$M(≠A)$とする.$∠A$内の傍接円と辺$BC$の共有点を$P$としたとき$4$点$BIPM$は共円であり,$BI=5,BC=11$であった.このとき$IP$の長さは正の整数$a,b$と平方因子を持たない正の整数$c$を用いて,$a−b \sqrt{c}$と表せるので$a+b+c$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯005(C)

MrKOTAKE 自動ジャッジ 難易度:
12日前

21

問題文

鋭角三角形 $ABC$ があり, $B$ から $AC$ への垂線の足を $D$ とし,重心を $G$ ,垂心を $H$ とする.このとき $4$ 点 $B,C,G,H$ は共円であり$AD=3,CD=5$であったので, $AB$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

KOTAKE杯005(B)

MrKOTAKE 自動ジャッジ 難易度:
12日前

21

問題文

三角形 $ABC$ があり, $ \angle ACB$ の二等分線と $AB$ の交点を $D$ とし,線分 $BC$ 上に点 $P$ ,線分 $AC$ 上に点 $Q$ をとると相異なる $4$ 点 $A,C,D,P$と$B,C,D,Q$ はそれぞれ共円であり $CP=3,CQ=4,AB=15$ が成立した.このとき三角形 $ABC$ の面積の $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

PGC005 (B)

pomodor_ap 自動ジャッジ 難易度:
6月前

35

問題文

$BC=123, \angle B=90^{\circ}$ なる三角形 $ABC$ について,内心を $I$,$\angle A$ 内の傍心を $J$ とすると,四角形 $ABIC$ は三角形 $BCJ$ よりも面積が $246$ 大きくなりました.$AB$ の長さを求めてください.

PGC005 (A)

pomodor_ap 自動ジャッジ 難易度:
6月前

47

問題文

$BC=18$ かつ面積が $162$ なる三角形 $ABC$ について,重心を $G$,$G$ から $BC$ に下ろした垂線の足を $P$ とすると,三角形 $PGC$ の面積が $30$ となりました.$AC$ の長さの二乗を求めてください.

KOTAKE杯005(A)

MrKOTAKE 自動ジャッジ 難易度:
12日前

25

問題文

三角形 $ABC$ の内部に点 $D$ をとると $DB=DC,AC=AD, \angle DBC=19^{\circ}, \angle ABD=30^{\circ} $ が成立したので $\angle BAC$ の大きさを度数法で解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

KOTAKE杯003(G)

MrKOTAKE 自動ジャッジ 難易度:
4月前

37

問題文

三角形$ABC$の重心を$G$とすると,$∠AGB=120°,∠AGC=150°,AB=14$
であったので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(D)

MrKOTAKE 自動ジャッジ 難易度:
4月前

39

問題文

三角形$ABC$の内心を$I$とすると$AB=65,AC=78,AI=39$であったので
$BC$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(F)

MrKOTAKE 自動ジャッジ 難易度:
4月前

33

問題文

鋭角三角形$ABC$があり$BC$の中点を$M$とし,$B$から$AC$におろした垂線の足を
$D$とする.$AM$と$BD$の交点を$P$とし,半直線$CP$と$AB$の交点を$E$とすると$∠DEP=∠DMP,
DM=5,EM=2$が成立したので
三角形$ABC$の面積の$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(J)

MrKOTAKE 自動ジャッジ 難易度:
4月前

23

問題文

$AB<AC$の鋭角三角形$ABC$があり垂心を$H$,外心を$O$とする.
直線$AO$と$BC$の交点を$D$とすると$AB:BD=5:3,CH=27,AH=19$
が成立したので$AC$の長さの$2$乗を解答してください.

解答形式

例)ひらがなで入力してください。