正 $12$ 面体の $20$ 個の頂点に,$20$ 個の数字 $$ 1\cdot 1!, \quad 2\cdot 2!, \dots \quad 20\cdot 20! $$ を配置します.この正 $12$ 面体の各面の正五角形に対し,その頂点に置かれた $5$ つの数字の総和を書き込みます.面に書き込まれた $12$ 個の数字の総和は配置の仕方によらず一意に定まるので,$S$ を $2024$ で割った余りを解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
どの桁の数も $2$ 以下の非負整数であるような $14$ 桁の正の整数のうち,$7$ の倍数であるようなものの個数を答えてください.
方程式 $x^2 - 77\left\lfloor x \right\rfloor + 55\lceil x \rceil + 57 = 0$ の実数解の $2$ 乗の総和を解答してください.
高校生時代(2016年)の作問のリメイクです.
$8$ つのアルファベット $\mathrm{I, M, L, I, M, R, I, M}$ を並べて得られる文字列であって,$\mathrm{L}$ が $\mathrm{R}$ より左にあるでかつ,$\mathrm{I}$ の右隣に $\mathrm{M}$ が来るものはいくつありますか.
$2$ 行 $2025$ 列のマス目の各マスに $1$ 以上 $4050$ 以下の整数を $1$ つずつ書き込む方法であって, 以下の条件を満たす書き込みを一筆書きと呼びます.
各一筆書きに対して,$2025$ が $i$ 行 $j$ 列目に書き込まれているとき,その一筆書きのスコアを $i+j$ で定めます.全ての一筆書きに対して,そのスコアを足し合わせた総和を求めてください.
$2^{2^{10}}$ を素数 $2027$ で割った余りを求めてください.
$a, b$ を非負整数とします。xy平面上の点 $(0, 0)$から点 $(a, b)$まで、$x$ 軸正方向に1進むか、$y$ 軸正方向に1進むかで到達するための道の数を $C(a, b)$ とします。
$0 \leq a < 1100 $ かつ $0 \leq b < 1100 $ であるような非負整数組 $(a, b)$ であって、$C(a, b)$ が奇数であるようなものの個数を答えてください。
答えは非負整数なので,その数値を回答してください.OMCと同じです.
円 $\Omega$ に内接する三角形 $ABC$ があり,$AB=13,BC=14,CA=15$ を満たしています. 線分 $BC$ の中点を $M$,$A$ を通り直線 $BC$ と直交する直線と $\Omega$ との交点のうち $A$ でない方を $D$ とします. 直線 $AM,DM$ と $\Omega$ との交点のうちそれぞれ $A,D$ でない方を $P,Q$ とし,直線 $BC$ と直線 $PQ$ との交点を $R$ とするとき,三角形 $MQR$ の面積は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.
4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:
$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$
互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.
$∠A$が鋭角であり$AB=AD,BC=CD=7,∠ABC=∠CDA=90°$を満たす四角形$ABCD$がある.線分$AB$,線分$AD$の中点をそれぞれ$M,N$とし,直線$MN$と直線$BC$の交点を$P$とすると$AP=24$であったので$AC$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.
$A$ の右隣にある文字は $B$ ではない.
$B$ の右隣にある文字は $C$ ではない.
非負整数で解答して下さい.
$AB<BC$なる鋭角三角形$ABC$があり,$B$から$AC$におろした垂線の足を$D$とし,線分$BC$の中点を$M$とする.三角形$ABC$の外接円上に点$E,F$をとると$4$点$EDMF$はこの順に同一直線上に存在し,$DE=6,MF=8,CD=15$であったので線分$AB$の長さの$2$乗を解答してください.
2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.
非負整数で解答してください.