yes 自動ジャッジ 難易度: 数学
2025年3月17日11:19 正解数: 8 / 解答数: 11 (正答率: 72.7%) ギブアップ数: 0

全 11 件

回答日時 問題 解答者 結果
2025年3月25日12:00 Kta
正解
2025年3月20日8:48 MrKOTAKE
正解
2025年3月19日22:04 Nyarutann
正解
2025年3月18日21:29 Weskdohn
正解
2025年3月18日21:05 Hensachi50
正解
2025年3月18日10:54 ゲスト
不正解
2025年3月18日10:54 ゲスト
不正解
2025年3月18日10:53 ゲスト
不正解
2025年3月17日18:14 nanohana
正解
2025年3月17日16:41 Hensachi50
正解
2025年3月17日15:39 tima_C
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

初投稿

Upasha 自動ジャッジ 難易度:
37日前

12

問題文

命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ

解答形式

真ならば真、偽ならば偽と入力

3月前

12

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(1)$ $P(2)$の値を求めよ。

(2)~(4)は,自作場合の数・確率1-2につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

有理数

nanohana 自動ジャッジ 難易度:
18日前

6

問題文

$\sqrt{n}$と $\sqrt{n+3}$が共に$有理数$となるような自然数$n$を全て求めよ。

解答形式

条件を満たす$n$の総和を入力してください。

求面積問題26

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

2つの正方形が図のように配置されています。赤と青の面積の差が$11$のとき、紫と橙の面積の差を求めてください。

解答形式

半角数字で解答してください。

整数

kiriK 自動ジャッジ 難易度:
5月前

14

$
f(x)= 2^{2^{x}x}-1
$
とする。このとき、
$
f(1)+f(2)+f(3)+・・・+f(2024)=A
$
とすると、Aの一の位の数字は何になるか。

OMCB030-C没案

MARTH 自動ジャッジ 難易度:
3月前

8

OMCB030-C(https://onlinemathcontest.com/contests/omcb030/tasks/4587)
のもう一つの案です.


$2$ 以上の整数 $n$ に対し,$n$ が持つ相異なる素因数の総積を $\mathrm{rad}(n)$ で表します.例えば,$\mathrm{rad}(18)=2×3$ です.次の等式を満たす $2$ 以上の整数 $m$ の総和を求めてください.

$$m=\mathrm{rad}(m)+240$$


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

整数

kiriK 自動ジャッジ 難易度:
5月前

20

$
a!=b^{2}+2となる自然数a,整数bについて、
$
$
k(a,b)=a+bとおく。
$
$
k(a,b) の値として考えられるものは何個あるか。
$

第1回琥珀杯 大問5

Kohaku 自動ジャッジ 難易度:
51日前

12

問題文

円$O_1,O_2,O_3$は点$O$を中心とする同心円で、この順に半径が小さい。円$O_1,O_2,O_3$の周上に、それぞれ点$A,B,C$をとるとき、$△ABC$の内部または周上に点$O$が含まれる確率を求めよ。

解答形式

0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。

簡単な幾何

Lamenta 自動ジャッジ 難易度:
8月前

17

問題文

$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。

解答形式

半角数字で解答してください。

OMC没問2

Kta 自動ジャッジ 難易度:
23日前

3

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。

工夫すると簡単になる問題

ac 自動ジャッジ 難易度:
49日前

3

問題

式1の時、式2の解を求めよ。
ただし、数の小さい順に答え、
答えが2つ以上ある場合、「,」を用いること。
例 2分の1と1の時は、1/2,1

式1

$$
12a^{2}-a=1
$$

式2

$$
16a^{2}-8a-9a^{2}-6a
$$