指数型曲線の長さ

AS 自動ジャッジ 難易度: 数学 > 高校数学
2025年4月12日18:08 正解数: 0 / 解答数: 0 ギブアップ不可
積分 弧長

$e$ は自然対数の底とする.
$\ x=(2t-1)e^t,\ y=2(t^2-t+1)e^t$
でパラメータ表示される曲線について,$0\leqq t\leqq 1$ 部分の長さを求めよ.

答えは有理数 $a,b$ を用いて $a+be$ の形で表されるので,$a,b$ の値をそれぞれ $1, 2$ 行目に記して答えよ.
ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
のように記入する.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または