指数型曲線の長さ2

AS 自動ジャッジ 難易度: 数学 > 高校数学
2025年4月12日18:08 正解数: 0 / 解答数: 0 ギブアップ不可
積分 弧長

$e$ は自然対数の底とする.座標平面上において
$\ x=t-e^{2t},\ y=2e^t+e^{-t}$
によってパラメータ表示される曲線について,$0\leqq t\leqq \log 2\sqrt2$ 部分の長さを求めよ.

答えは $\displaystyle\frac{\fbox{ (1) }\sqrt{\fbox{ (2) }}}{\fbox{ (3) }}$ の形で表されるので,空欄 $ (1),(2),(3)$ に当てはまる自然数をそれぞれ $1, 2, 3$ 行目に記して答えよ.ただし,最も簡単な形に直して答えること.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または