接点・共通領域を持たない円$A,B$があり,これらの中心を通る直線$l$との交点を$P,Q,R,S$とします.($P≠Q≠R≠S$)
但し$P,Q$が$A$の円周上,$R,S$が$B$の円周上にあり,$P,Q,R,S$の順に並ぶとします.
また$PS,QR$の長さをそれぞれ$a,b$と置きます.
この時$A,B$の共通内接線の長さが$2025$となるような$(a,b)$の組として考えられるものは何通りありますか.
半角数字で解答して下さい.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
SKG学院では$5×5$のマス目を使い,とあるゲームが行われている. ゲームのルールは以下の通り. ・お客さんと生徒がじゃんけんをする.勝った方が先手,負けた方が後手となる. この時あいこは考えないものとする. ・先手は黒の碁石,後手は白の碁石をマスの上に交互に置いていく. ・同じマスには碁石は一つまでしか置けない. ・マス目が全て埋まった時,各行について次の条件を満たすものを特別な行と呼び,その個数を数える. 特別な辺:ある行の$5$マスを見た時お客さんが置いた碁石の個数が偶数個であるもの. ・特別な行の個数が偶数であればお客さんの勝ち,奇数であれば生徒の勝ちとなる.
お客さんが勝つ確率を$A$,お客さんが勝つ時の碁石の置き方の総数を$B$とする. $A×B$の値を求めなさい. 但し回転して重なるような碁石の置き方は区別しないとする.
半角数字で入力して下さい.
半径$66$の円に内接する正$66$角形の対角線(各辺も含む)の長さの$66$乗和を求めて下さい. 但しある長さの$𝑛$乗和とは,与えられた長さ$P_1,P_2…$について${P_1}^n + {P_2}^n …$を指します.
答えを$2025$で割った余りを半角数字で入力してください. 4/26 19:55 誤った答えが入力されていました.大変申し訳ありません.
$AB=1$の正十二角形$ABCDEFGHIJKL$がある。$KD$と$CJ$、$AF$と$DK$、$AF$と$DI$、$DI$と$EJ$、$AH$と$EJ$、$AH$と$CJ$の交点を、それぞれ$M,N,O,P,Q,R$とする。六角形$MNOPQR$の面積を求めよ。
互いに素な正整数$a,b,c$及び平方因子をもたない正整数$d$を用いて、$\frac{b−c\sqrt{d}}{a}$と表せます。$a+b+c+d$を解答してください。
$R_{a}をa$桁のレピュニット数とします. $R_{24}$を素因数分解しなさい. 但しレピュニット数とは,各桁が全て$1$である数のことを指します.
ある相異なる正整数$a_{1}…a_{10}$を用いて, $R_{24}=a_{1} \times a_{2} \times … \times a_{10} $と書けるので,$a_{1}+…+a_{10}$の値を求め,半角数字で入力して下さい.
聖くんと光くんはトランプゲームを行うことにした.
なお$1$ から $13$ までの数字が書かれたトランプをそれぞれ四枚ずつ用いる.
ルールは以下の通り. - 聖くんはトランプを $1$ 枚から$3$ 枚まで引くことができる. - 光くんは幾つかの質問をして,聖くんが引いたトランプに書かれた数字を回答する.
光くん「書かれた数字の和を教えて」 聖くん「$31$ だよ」 光くん「うーん難しいな……なにかヒントくれない?」 聖くん「トランプに書かれた数字の積を求めたら、各位の和は $2$ になったよ」
光くんが引いたトランプの目として考えられるものを全て求めなさい。
答えが$1,2,4$の場合は$(1,2,4)$と入力して下さい.(小さい順に)
SKG学院の文化祭では,$1$から$10$の目が一つずつ書かれた十面体の歪んだダイスを配布しています.
このダイス$10$個に$1$から$10$までの番号をつけることにしました.
ここで以下のような事実が分かっています. また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.
・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.
この$10$個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.
実数から実数への関数$f$であって任意の実数$x,y$について$$f(x)+f(f(y)+x)=f(f(x))+4y$$ が成り立つようなものを全て求めよ。
簡単でいいので証明もお願いします。
次の虫食い算について,$SUKEN=?$
半角数字で入力して下さい. 但し$S≠E≠I≠K≠O≠U≠N$とします.
$6106$以下の正整数$N$について以下のようにスコアを定める. スコア:整数$a,b(a≦b)$の組で$ab=N$を満たすようなものの個数. スコアが$2$となるような$N$は何通りありますか. 但し,以下に示す10000以下の素数表を用いてもいい. http://allthingsuniverse.com/jp/prime/10000.html
半角数字で入力してください.
正整数に対して定義され非負整数値をとる関数 $f$ が以下を満たしています.
任意の正整数 $x,y$ について $f(xy)=f(x) \oplus f(y)$
$x$ と $y$ が互いに素ならば $f(xy)=f(x)+f(y)$
このような関数 $f$ について,以下を満たす正整数の組 $(x,y)$ の個数を $c(f)$ とします.$c(f)$ がとりうる値は有限個なので,その総和を解答してください.
$x,y$ はともに $30^{10}$ の約数である.
$f(xy)=f(x)+f(y)$
追記: $\oplus$ はビットごとの排他的論理和です
SKG学院の学園祭では下のような$5$マス$\times5$マスの盤を用いて次のようなゲームを行う.
・お客さんは12個の碁石を全てマスの上に置く. ・一マスには一つまでしか碁石は置けない. ・この時スコアを次のように定める. スコア:各行各列について,碁石が偶数個置かれているものの個数.
スコアが10となるような碁石の置き方の一例を答えよ.
置かないマスは0,置くマスは1で表す. 例えば一番右上と一番左上にのみ碁石を置く.この置き方は下のように書くものとする.
10001 00000 00000 00000 00000
またこの時スコアは8である.
今年でSKG学院の文化祭は第$66$回を迎えます.また今年度は $2025$ 年です.
さて$0,2,5$ のみを用いた数式の内,答えが $66$ となるようなものを一つ求めてください.
但し,演算子($+, -, \times$ など)は自由に用いて良いものとします.
一例:
$\left( (2 \times 0 \times 2 \times 5)! + (2 \times 0 \times 2 \times 5)! \right) \times \left( 2^2 + 0^2 + 2^2 + 5^2 \right) = (1+1) \times 33 = 66$
式と答えを省略無しで入力して下さい.上の例とは違うものをお願いします.