自作問題

tomorunn 自動ジャッジ 難易度: 数学 > 競技数学
2025年5月10日8:16 正解数: 11 / 解答数: 24 (正答率: 45.8%) ギブアップ数: 1

問題文

(10進法で)正の整数を書き、各桁の数字を赤か青に塗ったものを色付き整数と定義する。
例えば、57という数字を色付き整数で表すと、5,7をそれぞれ赤、青に塗るかのそれぞれ2通りあるので4通りの表し方がある。
次の条件を満たす色付き整数の個数を求めよ。
・各桁の数の総和が10である。
・どの桁にも0は使われていない。

解答形式

半角整数で入力してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

TMC001(I)

hya_math 自動ジャッジ 難易度:
3月前

9

鋭角三角形$ABC$について,その垂心を$H$,外心を$O$,線分$AB$,$BC$,$CA$の中点をそれぞれ$L,M,N$とします.円$OMN$と直線$LN,LO,LM$の交点のうち,$N,O,M$でないほうをそれぞれ$P,Q,R$とすると以下が成立しました.
$$
AH=6,LN=4, PC\perp CR.
$$
この時,線分$OQ$の長さの二乗の値は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.

TMC001(G)

hya_math 自動ジャッジ 難易度:
3月前

11

鋭角三角形$ABC$について,その外接円を$\Gamma$,外心を$O$,垂心を$H$,点$A$から辺$BC$に下した垂線の足を$D$とします.さらに,直線$AO$と辺$BC$の交点を$E$,直線$AO$と$\Gamma$の交点を$F$とすると以下が成立しました.
$$
OH=10, DH=12, EF=13
$$
このとき$\Gamma$の面積としてありうるものの総和は互いに素な正の整数$a,b$を用いて$\frac ab\pi$と表せるので$a+b$を回答してください.

TMC001(D)

OooPi 自動ジャッジ 難易度:
3月前

9

正整数 $a,b$ であって以下が整数になるようなすべての組 $(a,b)$ について $ab$ の総和を求めてください
$$
\frac{(3ab+2a+4b-6)^2}{13(a^2b^2+a^2+4b^2+4)}
$$

ABC(H)

atawaru 自動ジャッジ 難易度:
4月前

29

問題文

$n$ を $3$ 以上の奇数とします.いま,円に内接する凸 $n$ 角形 $P_1P_2\dots P_n$ があり,$k=1,2,\dots,n$ について角 $P_k$ の大きさを ${a_k}^{\circ}$ としたところ,

$$\sum_{k=1}^{\frac{n-1}{2}}a_{2k}=7777$$

が成立しました.このとき,度数法での角 $P_1P_2P_n$ の大きさとして考えられる値の総和を解答してください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

TMC001(B)

hya_math 自動ジャッジ 難易度:
3月前

15

関数$A(n),B(n)$を
$$
A(n)=(1\le x \le nを満たす1001と互いに素な整数xの個数)\\
B(n)=(n\le x \le 1001を満たす1001と互いに素な整数xの個数)
$$
と定めるとき,次の値を求めてください.
$$
\sum_{n=1}^{1000}\quad \frac{A(n)^2}{A(n)-B(n)}
$$

ABC(G)

atawaru 自動ジャッジ 難易度:
4月前

41

問題文

$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式

$$x^{999}+x^{998}+\dots+x+1=0$$

の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,

$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$

の値を求めてください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.


問題文

$ $ 次の等式をみたす正整数の組 $(x, y, z)$ の個数を求めて下さい.
$$x^3 + 2x^2y + x^2z + xy^2 + xyz = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$$

解答形式

半角英数にし,答えとなる非負整数値を入力し解答して下さい.

U

mani 自動ジャッジ 難易度:
33日前

21

$3$ 点 $A,B,C$ はこの順で一直線に並んでおり,$AC,AB,BC$ を直径とする円をそれぞれ $\omega_1,\omega_2,\omega_3$ とし,点 $B$ を通る直線と $\omega_1,\omega_2,\omega_3$ の交点を,$P,Q,B,R,S$ の順に並ぶように定めると,
$$AB<BC,\quad AB=\sqrt{390},\quad QB=18,\quad BR=24$$
が成り立ちました.このとき,互いに素な正整数 $m,n$ を用いて $PB:BS=m:n$ と表されるので,$m+n$ の値を解答してください.

ABC(F)

atawaru 自動ジャッジ 難易度:
4月前

52

問題文

$2$ 以上の整数 $n$ のうち,次の条件を満たすものはいくつありますか?

  • $n$ の $k$ 個の正の約数を小さい順に $d_1,d_2,\dots,d_k$ としたとき,任意の $1$ 以上 $k-1$ 以下の整数 $i$ について $d_{i+1}-d_i\leq40$ が成立する.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

A

nmoon 自動ジャッジ 難易度:
4月前

40

問題文

正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.

$$AP = 10 , BP = 14 , CP = 16$$

このとき,正三角形 $ABC$ の面積を求めて下さい.

解答形式

求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.

ABC(C)

atawaru 自動ジャッジ 難易度:
4月前

40

問題文

三角形 $ABC$ について,重心を $G$ ,線分 $AB$ の中点を $M$ ,線分 $AC$ の中点を $N$ とし,直線 $AG,MN$ の交点を $P$ としたとき,四角形 $BGPM$ の面積が $2025$ となりました.三角形 $ABC$ の面積を求めてください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

PDC005 (B)

poinsettia 自動ジャッジ 難易度:
8月前

31

$\angle B=90^{\circ}$ なる直角三角形 $ABC$ について,線分 $AC$ の中点を $M$ とし,内部に $PM\parallel BC$ なるように点 $P$ を取り,三角形 $BPM$ の外接円と三角形 $ABC$ の外接円が再び交わる点を $X$ とする.$AP=5, PM=8, MA=10$ が成り立っているとき,線分 $PX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.