全 5 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
✕✕
以下の問いに答えよ.(自然数$n$について,$n!$ は,$1$ から $n$ までの自然数をすべてかけた値を表す.ただし$0!=1$とする.)
$r^m=\frac{r^m-r^{m+1}}{1-r}$ という式変形を用いて,$s<t$ を満たす自然数組 $(s,t)$ と, $r<1$ を満たす実数 $r$ について,$$r^s+r^{s+1}+\cdots+r^t=\frac{r^s-r^{t+1}}{1-r}$$ となることを示せ.
自然数組 $(a,i)$ について $a^i < i!$ が成立するなら,$i$ 以上の任意の自然数 $j$ で $$a^j < j!$$ となることを示せ.
自然数組 $(a,i,k,n)$ について,$f(k)=k!-a^k$ ,$g(k)=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots +\frac{1}{k!}$ とする. $i<n$ ,$f(i)> 0$ を満たすとき,$$g(n)< g(i-1)+\frac{1}{a^i-a^{i-1}}-\frac{1}{a-1}\left( \frac{1}{a} \right)^n$$となることを示せ.
$n>4$ を満たす自然数 $n$ について,$$g(n)<\frac{67}{24}$$ となることを示せ.
私に伝わる程度でよいので、軽めに記述してください。
太郎君は次のルールで行動する: 前日に花子さんで抜いた場合、次の日に抜く確率は$\frac{1}{5}$ 前日に花子さんで抜かなかった場合、次の日に抜く確率は$\frac{2}{3}$ 今日花子さんで抜かなかったとき$n$日後に抜く確率を$P_n$とする。 $n \to \infty$のときの$P_n$を、小数点5位を四捨五入して、小数点4位まで求めよ。
答えのみ記入
複素数の数列$\lbrace z_{n}\rbrace (n=0, 1, 2, ...)$は $$ z_{n+1}=\left\lvert\frac{z_{n}+\bar{z_{n}}}{2}\right\rvert z_{n} (n=0,1,2,...) $$ を満たしている。このとき,$\displaystyle \lim_{n\to \infty}z_{n}$が収束するような$z_{0}$の存在範囲を複素数平面上に図示せよ。
この存在範囲を数式で表現してください。最も簡単な1つの等式あるいは不等式を用いてください。
$a^2+b^2+c^2+d^2+e^2=13053769$を満たす自然数$(a,b,c,d,e)$の組を1つ求めよ。ただし、$a<b<c<d<e$とする。
a,b,c,d,e,fの順で、間を半角スペースで区切り解答してください。 (例)$(a,b,c,d,e)=(1,2,3,4,5)$だった場合 →1 2 3 4 5
$56076923$ の素因数の総和を求めてください. ただし, 重複する素因数は異なるものとして考えます.
例)非負整数を答えてください.
円$O_1,O_2,O_3$は点$O$を中心とする同心円で、この順に半径が小さい。円$O_1,O_2,O_3$の周上に、それぞれ点$A,B,C$をとるとき、$△ABC$の内部または周上に点$O$が含まれる確率を求めよ。
0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。
$1$ 以上 $5$ 以下の整数しか項に持たない全 $2025$ 項の数列があり,任意の連続する $3$ 項において以下を満たします.
例えば,$1, 1, 1, 1, \ldots$ や $1, 3, 5, 4, \ldots$ は条件を満たします.このような数列は $N$ 個あります.$N$ を素数 $677$ で割った余りを求めてください.
半角数字で解答してください.
以下の関数$f(x)$の最小値の$2$乗を求めてください。($x$は実数)
$$ \begin{align} f(x)= \ &\bigg\{48\lim_{N\rightarrow\infty}\Bigg(\sum_{k=0}^{N}\frac{\sqrt{N^2+k^2}}{N^2}\Bigg)-12\log\big(3+2\sqrt{2}\big)\bigg\}x^4\\ &+\sqrt{2} \ d\Bigg(\sum_{n=10}^{20}{}_n\mathrm{C}_{10}\Bigg)x^3-\bigg\{\max_{\theta\in\mathbb{R}}\bigg|\begin{pmatrix}96\\96\sqrt{7}\end{pmatrix}\cdot\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}\bigg|\bigg\}x^2\\ &-768\sqrt{2}\Bigg(\mathrm{Re}\sum_{m=0}^{\infty}\Big\{2^{-\frac{m}{2}}\Big(\cos\frac{m\pi}{12}+i\sin\frac{m\pi}{12}\Big)\Big\}-\frac{\sqrt{3}}{2}\Bigg)x+120\sqrt{2} \end{align} $$
ただし、$d(n)$は約数個数関数、縦書きの()はベクトル、$|A|$は絶対値、$\max_{\theta\in\mathbb{R}}f(\theta)$は$\theta$を実数範囲で動かしたときの$f(\theta)$の最大値、$\mathrm{Re}(z)$は$z$の実部を表します。
非負整数を半角英数字で入力してください。
$$ \sqrt{log_\frac{1}{2}(\frac{1}{256})}の小数部分? $$
下の問題の積分の値を求めなさい。 $$ \int_0^\infty \frac{\ln(x)}{(x^2+1)^2} dx $$
例)$-\frac{1}{2}$の場合 -1/2 と半角英数字で入力してください。
次の極限を求めてください。 $$\lim_{n\rightarrow\infty}\sum_{k=0}^n\frac{{}_nC_k}{(k+1)(n+1)^k}$$
解答に分数や特殊な文字、累乗を使用したい場合はTeX記法に則ってください。$は必要ありません。