実数係数多項式で次数が $9999$ 以下の $P(x)$ について,$(P(1),P(2), \dotsc P(10000))$ が $(1,2, \dotsc 10000)$ の並べ替えであるとき,$P(10001)$ が考えられる最大値をとるような $P(x)$ の個数を素数 $9973$ で割ったあまりを解答してください.
半角数字で解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$30$ 人の人が $\pi$ ナポゥ君の主催するたけのこニョッキ大会に参加します.ルールは次の通りです.
なかなか成功しないことに気づいた $\pi$ ナポゥ君は,次のように八百長をすることにしました.
このたけのこニョッキが成功するような,$30$ 人に与えられる正整数の総和の最小値を解答して下さい.
$AB>AC$ を満たす鋭角三角形 $ABC$ において、$\angle A$ の二等分線と $BC$ の交点を $D$ とする。線分 $AD$ 上に $AP:PD=AB:BC, AQ:QD=AC:CB$ を満たす点 $P,Q$ をとり、$AC$上に点 $R$ 、$AB$上に点 $S$ を $BC//PR//QS$ を満たすようにおいた。$\triangle APR$ の外接円と $\triangle AQS$ の外接円の交点を $T(\neq A)$ 、$\triangle BCT$ の内心を $I$ 、直線 $ RS $ と直線 $BI$ ,直線 $CI$ の交点を $U,V$ 、線分 $BC$ ,線分 $UV$ の中点を $M,N$ としたところ$$MN=5,UV=16$$であった。$\triangle BCT$ の内接円の半径が $2$ のとき、$IT$ の長さを求めよ。
求める値の二乗は互いに素な自然数 $p,q$ を用いて $\frac{p}{q}$と表せるので、 $p+q$ の値を答えてください。
鋭角三角形 $ABC$ があり、その垂心を $H$、直線 $AH$ と直線 $BC$ の交点を $D$ とすると、$2\angle BAD=\angle CAD,AC=11,DH=4$ であった。このとき、線分 $BC$ の長さを求めよ。
求める長さの二乗、$BC^2$ は互いに素な自然数 $p,q$ を用いて $\frac{p}{q}$ と表せるので、$p+q$ の値を求めてください。
この問題は、Prime Prime Prime (Easy)と一部分一致しているため、相違点を赤色で強調しています。
また、必要とされる素数表の大きさがOMCに乗っているものよりも大きいため、この問題に限り、外部の素数表の閲覧を許可します。
$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $ < $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください. 例えば, $23$ は $23(i=1,j=2)$ が全て素数なので条件を満たします.
$AB=4,\angle ACB=45^\circ,AB<AC $を満たす鋭角三角形$ABC$がある。辺$BC$の中点を$M$とすると、線分$AM$上に$CP=4$となる点$P$をとることができた。また、点$Q$を辺$BC$に関し$A$と反対側に$\angle ACP=\angle PAQ,BQ=CQ$になるようにとったところ、$BQ=7$となった。このとき、線分$BC$の長さを求めよ。
求める長さの二乗、$BC^2$は互いに素な自然数$p,q$を用いて$\frac{p}{q}$と表せるので、$p+q$の値を求めてください。
三角形$ABC$の内心を$I$ , 外心を$O$とします。 $AI=5$ , $AO=6$ , $AB+AC:BC=5:2$が成り立っている時、$cos\angle OAI$の値を求めてください。
求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せられるので、$a+b$の値を解答してください。
$314$ 人の人が $\pi$ ナポゥ君の主催するたけのこニョッキ大会に参加します.ルールは次の通りです.
このたけのこニョッキが成功するような,$313$ 人に対する正整数の与え方の場合の数が $2$ で最大何回割れるかを解答してください.ただし, $314$ 人の名付け方は固定されているものとします.
$3×5$のマス目がたくさんあり、これを「カード」と呼びます。 いま、1以上2025以下の整数の中から異なる2つの自然数を選び、$(i,j)$(ただし$i<j$)とします。 この時、「カード」を何枚か使うことで$i×j$のマス目を以下の「条件」を全て満たすように埋めることができるような$(i,j)$の組は何通りですか。
「条件」 ・マス目の中で、「カード」同士が重なっている部分が存在しないこと。 ・マス目から「カード」がはみ出した部分が存在しないこと。 ・マス目の中で、「カード」が置かれていない場所が存在しないこと。
半角数字で解答してください。
$n$を素因数分解したときの2の指数を$v_{2}(n)$と表します。 この時、$$v_2\left( \prod_{k=1}^{2025} (5^k - 1) \right)$$の値を求めてください。
半角数字で入力してください。
正三角形 $ABC$ の内部を以下のように歩く移動するペンギンがいる.
・ 常に直進するが,辺(頂点を除く)にぶつかった場合は,辺に対して今移動してきた直線と対称な直線へ方向転換する.頂点についた場合,その時点で歩行をやめる.
また,$0\leq p \leq 1$を満たす実数 $p$ に対して,$f(p)$を以下のように定める.
・$f(p)$は,$AC$ を $p:1-p$ に内分する点を $D$ とし,このペンギンがはじめ $B$ にいて、$D$ に向かって直進したときの,ペンギンの歩行が止まるまでに辺(頂点を除く)にぶつかった回数
正整数 $n$ に対して,$f(p)=n$ を満たす $p$ の総和が $9$ であったとき,$n$ としてありうる値の総積を求めてください.
非負整数を半角英数字で解答してください.
$ \pi$ ナポゥくんの生まれた日からの日数を $N$ とします. $ \pi$ ナポゥくんは既に $3$ 歳の誕生日を迎えていますが,$28$ 歳の誕生日は迎えていません. $N$ の各桁の総和が $22$ であるとき、$N$ として考えられる正整数はいくつありますか.
半角英数字で解答してください.
$AB=AC=19,CE=DE=22$ である直角二等辺三角形 $ABC,CDE$ を $B,C,D$ がこの順に一直線上に並び、$A,E$ が $BD$ に関し同じ側にあるように置く。$CD$ の中点を$M$、$AM$ と $BE$ の交点を $P$ ,直線 $PC$ と $\triangle BMP$ の外接円の交点を $Q(\neq P)$ としたとき、$BQ^2$ を求めよ。