複素数平面上を動く点

astraea 自動ジャッジ 難易度: 数学 > 高校数学
2025年8月17日15:25 正解数: 5 / 解答数: 9 (正答率: 55.6%) ギブアップ数: 0

全 9 件

回答日時 問題 解答者 結果
2025年8月21日23:14 複素数平面上を動く点 kurao
正解
2025年8月21日23:13 複素数平面上を動く点 kurao
不正解
2025年8月21日23:11 複素数平面上を動く点 kurao
不正解
2025年8月21日21:57 複素数平面上を動く点 ゲスト
正解
2025年8月21日21:50 複素数平面上を動く点 L4mbdaUpsil0n
正解
2025年8月21日21:46 複素数平面上を動く点 SqRooti
正解
2025年8月21日21:42 複素数平面上を動く点 ゲスト
不正解
2025年8月21日21:40 複素数平面上を動く点 ゲスト
不正解
2025年8月21日18:14 複素数平面上を動く点 kmk_math
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

問題6

Youteru 自動ジャッジ 難易度:
9日前

8

ボール100個をランダムに20人に分ける。10人が1組の生徒で、10人が2組の生徒である。ボールが全く貰えない人がいてもよい。全てのボールは区別できず、分け方は$ _{119}C_{19}$通りあるが、それぞれの分け方は同様に確からしい。
1組の生徒のうち、それぞれの持つボール数の総積をポイントとする。ポイントの期待値は互いに素なA,Bで$\frac{A}{B}$と表せるので、A+Bを解答せよ。

問題4

tomorunn 自動ジャッジ 難易度:
3月前

13

問題文

以下の条件に従って数列 ${a_n}$ を定義するとき,$\displaystyle \sum_{n=1}^{2025} a_n$ の取りうる値の総和を求めよ.
・すべての正整数 $n$ に対し,$a_n$ は $0$ 以上の整数である.
・すべての正整数 $n$ に対し,$a_{2^n}=a_2^n$ を満たす.
・すべての正整数 $n$ に対し,$\displaystyle \sum_{k=1}^{n} a_k = \sum_{k=n+1}^{2n} a_k$ を満たす.

解答形式

半角数字で入力してください。

第1問

sulippa 採点者ジャッジ 難易度:
7月前

1

問題文

$p$ は $gcd(p, 10) = 1$ を満たす $p > 1$ の素数とする。
$\frac{1}{p}$ の小数表示における循環節を $C_1C_2...C_L$ とし、その長さを $L$ とする (すなわち $L = ord_p(10)$ である)。
循環節を構成する数字の並びから、以下の2つの整数を定義する。
1. $N_0 = C_1C_2...C_L$ (これを10進法の整数として評価した値)
2. $N_1 = C_2C_3...C_LC_1$ (同様に10進法の整数として評価した値)
また、$C_1 = \lfloor \frac{10}{p} \rfloor$ (すなわち $\frac{1}{p}$ の小数第1位の数字) とする。

以下の2つの条件 (A) と (B) を同時に満たすような、全ての組 $(p, q)$ を求めよ。
(A) $N_1 = qN_0$ が成り立つ。ここで $q$ は $q \ge 2$ を満たす整数である。
(B) $L = q - C_1$ が成り立つ。

解答形式

ある程度解答の方針を示した上で、
解を答えて下さい

問題3

Youteru 自動ジャッジ 難易度:
9日前

27

2種類のお菓子A、Bがそれぞれ24個ずつある、これをX, Y, Zの3人で余りなく分けることにした。ここで、ある人が1個ももらわないお菓子の種類があってもよい、X、Y、Zの3人のうちに、以下の条件をみたす2人が存在しないような分け方は何通りありますか。

条件:2人のうち1人はAをa個、Bをa'個もらい、もう1人はAをb個、Bをb'個もらうとき、a≤a'かつb≤b'かつa+b<a'+b'が成り立っている。

第3問

sulippa 採点者ジャッジ 難易度:
7月前

2

問題文

$gcd(x,y,z)=1$を満たす$x,y,z$について、 $x^2+y^2, y^2+z^2, z^2+x^2 $がすべて正の整数の平方となるとき、次の問いに答えよ。
(1) $x,y,z$ のうち、奇数であるものの個数は高々1つであることを示せ。
$x $を奇数、 $y, z$ を4の倍数とする。
(2) $y=44 $のとき、上記の条件を満たす正の整数$ x, z $の組を全て求めよ。

解答形式

(1)は簡潔な証明
(2)は答えだけで構いません

漸化式②

Americium243 自動ジャッジ 難易度:
55日前

2

問題文

正の整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$
を満たしている。
${|a_{2025}|}$ の正の約数の個数を求めよ。

解答形式

整数で入力してください

問題4

Youteru 自動ジャッジ 難易度:
9日前

14

$S=$$\{$$\sqrt{1},\sqrt{2},\dots,\sqrt{n} $$\}$の部分集合であって、次を満たすものの個数をmとする。
・要素が3つ
・どの2つを選んでも、2つの比の値が有理数となる

n=mとなるnを全て求め、その総和を求めなさい。

問題10

Youteru 自動ジャッジ 難易度:
9日前

8

Aさんは次のゲー厶を行った。
Aさんはコインを持っていない。
2つのボタンがある。片方を押すと$1/3$の確率でコイン、もう片方を押すと$2/3$の確率でコインが得られる。4050回ボタンを押して2025個のコインが得られるようにAさんが最善の行動をした際、Aさんは次の条件を満たした。
①4050回スイッチを押した後コインを2025持っていた。
②2n回スイッチを押した後コインをn個持っている、という状態が0以上3回以下発生した。(1≦n≦2024)
条件①②を同時に満たす確率をある既約分数$\frac{a}{b}$を用いて
$\frac{a}{b}×_{4050}C_{2025}×(\frac{2}{9})^{2025}$
と表せるので、a+bを求めよ。

漸化式①

Americium243 自動ジャッジ 難易度:
55日前

4

問題文

整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_0=2, a_1=4, a_{n+2}-4a_{n+1}+a_n=0}$$
を満たしている。
$${a_{2026}-a_{-2026}}$$
を求めよ。

解答形式

整数で入力してください

問題7

Youteru 自動ジャッジ 難易度:
9日前

13

3つの空箱がある。次のルールで2人で交互に石を箱に入れる。
・どちらかの行動を行う
 ・1つの箱に1つ石を入れる。
 ・既に石が入っている1つの箱に、今入っている個数の石をその箱に入れる
(つまり、石の個数が倍になる)
・ただし、既に箱にN個以上入っている場合はこれ以上石を入れられない

全ての山の石の個数をそれぞれN以上にした方が勝ちである。後手必勝となる2025以下のNの総和を求めよ。

問題8

Youteru 自動ジャッジ 難易度:
9日前

10

次の条件を満たす2025以下のnはいくつ存在しますか

条件
$f(n)=4d(n)$として、
($d(n)$はnの正の約数の個数)
$f^5(n)+f^{1278}(n)=56$が成立する。
(fの肩は関数の合成回数を表す)

問題15

Youteru 自動ジャッジ 難易度:
9日前

9

※この問題は人力で解けることを想定していない可能性があります。

平安時代には次のルールがある。
・男性が3日連続女性の家に通ったらその女性と結婚が成立する。
・男性が3年(1095日)間一切女性の家に通わなかったらその女性と離婚が成立する。
1人の男性が同時に女性と結婚できる人数は最大X人であり、女性の家に通いはじめてからX人の女性と結婚するのに必要な日数の最小値はY日である。XとYの10進数における文字列の結合を解答しなさい。ただし、1人の男性が1日に通える女性の家は1つだけである。
(寿命や重婚に対する刑罰は考慮しないものとする)