幾何

katsuo_temple 自動ジャッジ 難易度: 数学 > 競技数学
2025年9月7日23:04 正解数: 4 / 解答数: 6 (正答率: 66.7%) ギブアップ数: 0

問題文

三角形$ABC$において,$AB,BC$の中点をそれぞれ$M,N$とし,重心を$G$とします.三角形$AGM$の外接円と三角形$CGN$の外接円が再び交わる点を$P$とすると以下が成立しました.$$GP//BC AB=5 AC=4$$このとき線分$GP$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.

解答形式

例)ひらがなで入力してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

OMCで不採用にされたやつNo.1

kinonon 自動ジャッジ 難易度:
7日前

6

問題文

三角形 $ABC$ において,角 $A,B,C $の傍接円の半径をそれぞれ $r_A,r_B,r_C$ とし,内接円の半径を $r $とする.このとき,三角形 $ABC$ が以下の条件を満たすとき$r_A\cdot r_B\cdot r_C \cdot r$の最大値を求めよ.
$$BC=28,∠BAC=60 $$

解答形式

自然数となるので、その値を入力してください

200A

Nyarutann 自動ジャッジ 難易度:
43日前

10

問題文

正整数値に対して定義され正整数値をとる関数 $f(x)$ は,任意の正整数 $a, b, c$ において,以下を満たしました.
$$
f(a)+f(b)+f(c)=f(abc)+2
$$また,$f(15)=15$ を満たすとき,$f(2025)$ としてあり得る値の総和を求めてください.

解答形式

半角数字で解答してください.

KOTAKE杯006(E)

MrKOTAKE 自動ジャッジ 難易度:
2月前

29

問題文

鋭角三角形 $ABC$ があり,その外心を $O$ とし,$\angle BAC$ の二等分線と辺 $BC$ の交点を $D$ とすると,
$$BD=3,\quad AC=10,\quad \angle ADO=90^\circ$$
が成立しました.このとき,線分 $AD$ の長さの $\mathbf{4}$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

整数問題

Sry 自動ジャッジ 難易度:
21日前

15

問題文

次の式を満たす相異なる正の整数$p,q$を全て求めよ。

$$p^{p+q}−q^{p+q}=(pq)^p−(pq)^q$$

解答形式

$p+q$の値をそれぞれの組で求め総和した値を半角で入力してください。

自作問題

tomorunn 自動ジャッジ 難易度:
4月前

23

問題文

(10進法で)正の整数を書き、各桁の数字を赤か青に塗ったものを色付き整数と定義する。
例えば、57という数字を色付き整数で表すと、5,7をそれぞれ赤、青に塗るかのそれぞれ2通りあるので4通りの表し方がある。
次の条件を満たす色付き整数の個数を求めよ。
・各桁の数の総和が10である。
・どの桁にも0は使われていない。

解答形式

半角整数で入力してください。

整数問題

kitotch 自動ジャッジ 難易度:
2月前

25

問題文

$n$を整数とする。$n^{8}-n^{2}$を割り切る最大の自然数を求めよ。

解答形式

半角数字で入力してください。

13,14,15

U.N.Owen 自動ジャッジ 難易度:
5月前

13

円 $\Omega$ に内接する三角形 $ABC$ があり,$AB=13,BC=14,CA=15$ を満たしています.
 線分 $BC$ の中点を $M$,$A$ を通り直線 $BC$ と直交する直線と $\Omega$ との交点のうち $A$ でない方を $D$ とします.
 直線 $AM,DM$ と $\Omega$ との交点のうちそれぞれ $A,D$ でない方を $P,Q$ とし,直線 $BC$ と直線 $PQ$ との交点を $R$ とするとき,三角形 $MQR$ の面積は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.

KOTAKE杯006(B)

MrKOTAKE 自動ジャッジ 難易度:
2月前

39

問題文

鋭角三角形 $ABC$ があり,その外心を $O$ とします.直線 $AO,BC$ の交点を $D$,直線 $BO,AC$ の交点を $E$ とすると,
$$BD=6,\quad CD=3,\quad CE:EA=3:4$$
が成立しました.このとき,線分 $AC$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯006(A)

MrKOTAKE 自動ジャッジ 難易度:
2月前

34

問題文

正三角形 $ABC$ があり,その内部に点 $D$ をとると,
$$AD=33,\quad BD=4,\quad \angle ADB=120^\circ$$
が成立しました.線分 $CD$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯005(F)

MrKOTAKE 自動ジャッジ 難易度:
3月前

20

問題文

$AB<AC$ なる三角形 $ABC$ について,$AB=AD$ なる線分 $BC$ (端点を含まない) 上の点を $D$,円 $ABD$ と線分 $AC$ の交点を $E(\neq A)$,円 $BEC$ と線分 $AD$ の交点を $F$ とする.
直線 $BF$ と円 $FDC$ が再び交わる点を $P$ とすると,$AP\parallel BC$ かつ $PE=5, BC=12$ が成立したとき,$AB$ の長さの二乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

整数問題α

katsuo_temple 自動ジャッジ 難易度:
9月前

25

問題文

以下の式を満たす任意の正整数の組$(x,y)$について、$xy$としてありうる値の総和を求めて下さい。
$$
x^{y}=y^{x-y}
$$

解答形式

半角数字で解答して下さい。

内接円, 外接円, 傍接円

tori9 自動ジャッジ 難易度:
5月前

14

問題文

三角形 $ABC$ の内心と外心をそれぞれ $I, O$ としたところ,$AI=AO$ が成り立ちました.三角形 $ABC$ の内接円,外接円の半径がそれぞれ $142, 857$ であるとき,$\angle{A}$ 内の傍接円の半径を求めてください.

解答形式

例)答えは互いに素な正整数 $a, b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.