格子点上を,点 $P$ は $(0,2)$ から $(6,8)$ へ,点 $Q$ は $(2,0)$ から $(8,6)$ へ最短経路で進む. このとき,2 本の経路が交差しない(頂点共有もしない)組の総数を求めよ.
例)半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
区別できる6個の箱に区別できる球を12個入れる(球が1つも入っていない箱があってもよい). $i$ 番目の箱に入っている玉の数を $A_i$ とする. 入れ方すべてについて,積 $A_1^2 A_2^2\cdots A_6^2$ を計算し,その和を求めよ.
半角数字で入力してください。
$2025$ 以下の正整数 $n$ であって, $$\displaystyle\sum_{j=0}^{n}\displaystyle\sum_{i=j}^{2n-j} {}_{2n-j}C_{i}$$ が $6$ の倍数となるものの総和を求めよ.
数列 ${a_n}$ は $a_{n+1}=\dfrac{2a_n^2}{8-a_n^2}\ (n=1,2,\dots)$ を満たす. $a_{2025}=-4$ となるような $4$ 以上の実数 $a_1$ の個数を $M$ とするとき,$M$ を素数 $2017$ で割った余りを求めよ.
3以上の正整数 $n$に対し, $$ {}_nC_1, {}_nC_2, \dots, {}_nC_{n-1} $$の $n-1$個の数から $n-2$個を選んだときのそれらの最大公約数を $d$ とする. 全ての選び方について $d$ の総和を $d(n)$とする.100以下の$n$であって, $d(n)\le100$となる $n$の個数を求めよ。
$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を $$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.
たとえば, $$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.
半角英数にし、答えとなる正整数値を入力し解答して下さい.
$1^{2024}+2^{2024}+3^{2024}+4^{2024}+5^{2024}+…+2023^{2024}+2024^{2024}$を$17$で割った余りを求めよ。
元の問題を書き換えて別の問題にしました。前の問題は解いていただけなかったので別の問題に変えました。
余りを自然数でお答えください
$x$ の方程式 $x=1+\dfrac{3}{2+\dfrac{4}{1+\dfrac{3}{2+\dfrac{4}{1+\dfrac{3}{2+\dfrac{4}{1+\dfrac{3}{2+\dfrac{4}{x}}}}}}}}$ の実数解の $2$ 乗和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.
半角数字で解答してください.
$n=2\times 577$とする. このとき以下の値を素数$577$で割った余りを求めよ. $$\sum _{k=0}^{n} {}_{n+k} \mathrm{C}_{n-k}\cdot {}_{2k} \mathrm{C}_{k}$$
答えは正整数となるので、その値を解答してください
$a,b,c$を正の実数とし、$k$を実数とします。$x$の方程式$x^3-ax^2+bx-c=0$が$3$つの実数解$α,β,γ$を持ち、次が成り立ちます。 ・$|α+β|=a+2$ ・$|αβ|=b-k$
$γ$を$k$を用いて表してください。
解答はある正の整数$p,q,r$を用いて $γ=-p+\sqrt{q-rk}$ と表せますから、$p+q+r$の値を解答してください。
$p$を$3$より大きい素数とする $S=\sum_{k=1}^{p-2} k \cdot (k!) \cdot ((p-k-1)!)$ を$p$で割った余りを求めよ。
解答は既約分数で表せるので、 1行目に分子、 2行目に分母 を半角で書いてください 分母は1になる場合も書いてください
設問8
正の数からなる数列 ${a_n}$ が $a_1 > 0$ および漸化式 $a_{n+1} = a_n + \frac{1}{a_n^2}$ ($n \ge 1$) を満たすとき、極限値 $\lim_{n \to \infty} \frac{a_n}{\sqrt[3]{3n}}$ を求めよ。
次の式を満たす相異なる正の整数$p,q$を全て求めよ。
$$p^{p+q}−q^{p+q}=(pq)^p−(pq)^q$$
$p+q$の値をそれぞれの組で求め総和した値を半角で入力してください。