横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.
全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください. 但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.
正整数で答えてください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.
全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.
$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.
$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$
求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.
以下の式を満たす正の整数の組 $(m,n)$ 全てについて,$m + n$ の総和を求めてください.
$$(mn - 1)^2 + (m + n)^2 = 650$$
正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.
$$AP = 10 , BP = 14 , CP = 16$$
このとき,正三角形 $ABC$ の面積を求めて下さい.
求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.
$$x^4-xy^3+y^2=11, x^3y-y^4+x^2=13$$ を満たす複素数の組 $(x,y)$ について,$\dfrac{y}{x}$ としてありうる値の総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.
$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式
$$x^{999}+x^{998}+\dots+x+1=0$$
の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,
$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$
の値を求めてください.
答えは非負整数値となるので,それを半角で解答してください.
三角形 $ABC$ について,線分 $BC,CA$ の中点を $M,N$ とし,三角形 $AMN$ の外接円と三角形 $ABC$ の外接円,半直線 $AB$ がそれぞれ $A$ でない点で交わったのでそれぞれを $D, E$ とする.$MD=5, AB=34, BE=7$ が成り立つとき,線分 $BC$ の長さの二乗を解答せよ.
$2$ 以上の整数 $n$ のうち,次の条件を満たすものはいくつありますか?
$n$ を $3$ 以上の奇数とします.いま,円に内接する凸 $n$ 角形 $P_1P_2\dots P_n$ があり,$k=1,2,\dots,n$ について角 $P_k$ の大きさを ${a_k}^{\circ}$ としたところ,
$$\sum_{k=1}^{\frac{n-1}{2}}a_{2k}=7777$$
が成立しました.このとき,度数法での角 $P_1P_2P_n$ の大きさとして考えられる値の総和を解答してください.
$1,\ldots,2024$ の並べ替え $a_1,\ldots,a_{2024}$ に対して,スコアを $$ \sum_{k=1}^{2024} (2024a_k-k-1)(a_k-2024k) $$ で定めます.$2024!$ 通りの並べ替えに対して,スコアとしてあり得る値はいくつありますか.
半角数字で解答してください.
$a, b$ を非負整数とします。xy平面上の点 $(0, 0)$から点 $(a, b)$まで、$x$ 軸正方向に1進むか、$y$ 軸正方向に1進むかで到達するための道の数を $C(a, b)$ とします。
$0 \leq a < 1100 $ かつ $0 \leq b < 1100 $ であるような非負整数組 $(a, b)$ であって、$C(a, b)$ が奇数であるようなものの個数を答えてください。
答えは非負整数なので,その数値を回答してください.OMCと同じです.
三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.
このとき,3点 $ C,H,S$ が同一直線上にあった.
$$AH=17 , AO=11$$
のとき,三角形 $ABC$ の面積を求めてください.
答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.