PDC010 (B)

poinsettia 自動ジャッジ 難易度: 数学 > 競技数学
2025年10月24日21:00 正解数: 24 / 解答数: 38 (正答率: 63.2%) ギブアップ数: 1
この問題はコンテスト「PDC010」の問題です。

全 38 件

回答日時 問題 解答者 結果
2025年10月24日21:23 PDC010 (B) sdzzz
不正解
2025年10月24日21:18 PDC010 (B) rakki
正解
2025年10月24日21:17 PDC010 (B) SuamaX
正解
2025年10月24日21:17 PDC010 (B) _caz37_
正解
2025年10月24日21:14 PDC010 (B) SuamaX
不正解
2025年10月24日21:11 PDC010 (B) MARTH
正解
2025年10月24日21:11 PDC010 (B) miq_39
正解
2025年10月24日21:09 PDC010 (B) natsuneko
正解
2025年10月24日21:08 PDC010 (B) marron
正解
2025年10月24日21:06 PDC010 (B) jayjay
正解
2025年10月24日21:06 PDC010 (B) fountain
正解
2025年10月24日21:05 PDC010 (B) kzy33550336
正解
2025年10月24日21:03 PDC010 (B) epsug
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

PDC010(A)

poinsettia 自動ジャッジ 難易度:
3日前

45

問題文

各位の和が奇数であるような,$11$ で割り切れる最小の正の整数を求めよ.

PDC010 (C)

poinsettia 自動ジャッジ 難易度:
3日前

29

問題文

$1\leq a_1 < a_2 < a_3 < a_4 < a_5\leq 100$ をみたす整数の組 $(a_1,a_2,a_3,a_4,a_5)$ すべてについて,次の値の総和を求めよ.
$$\frac{a_1}{1}+\frac{a_2}{2}+\frac{a_3}{3}+\frac{a_4}{4}+\frac{a_5}{5}$$

B

nmoon 自動ジャッジ 難易度:
25日前

53

問題文

以下の式を満たす正の整数の組 $(m,n)$ 全てについて,$m + n$ の総和を求めてください.

$$(mn - 1)^2 + (m + n)^2 = 650$$

解答形式

正整数で答えてください.

A

nmoon 自動ジャッジ 難易度:
25日前

40

問題文

正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.

$$AP = 10 , BP = 14 , CP = 16$$

このとき,正三角形 $ABC$ の面積を求めて下さい.

解答形式

求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.

PDC010 (D)

poinsettia 自動ジャッジ 難易度:
3日前

24

問題文

鋭角三角形 $ABC$ について,垂心を $H$,直線 $AH$ と $BC$,$BH$ と $AC$ の交点をそれぞれ $D,E$ とし,線分 $BC$ の中点を $M$ とする.四角形 $BDHP$ が長方形となるように点 $P$ を取ると $\angle APM=90^{\circ}, AE=3, EC=8$ が成立するとき,線分 $AD$ の長さの二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

C

nmoon 自動ジャッジ 難易度:
25日前

40

問題文

nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.

  • 黒板に書かれた $2$ つの正の整数 $x,y$ について,黒板から $x,y$ を消し,$x,y$ の最大公約数と最小公倍数を黒板に書き込む.但し,このとき,操作前と操作後での黒板に書かれた数が,重複を許して全て一致することはないようにする.

全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.

解答形式

正整数で答えてください.

D

nmoon 自動ジャッジ 難易度:
25日前

37

問題文

$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.

$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$

解答形式

求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.

PDC009 (B)

poinsettia 自動ジャッジ 難易度:
27日前

82

問題文

$p^2q+16r=2s^2$ を満たす素数の組 $(p,q,r,s)$ すべてについて,$pqrs$ の総和を解答せよ.

PDC009(A)

poinsettia 自動ジャッジ 難易度:
27日前

43

問題文

一辺の長さが $68$ の正三角形 $ABC$ について,線分 $BC$ 上に点 $D$ をとり,$D$ から $AB,AC$ に降ろした垂線の足をそれぞれ $E,F$ とする.$BE=14$ が成り立つとき,線分 $CF$ の長さを求めよ.

PDC009 (E)

poinsettia 自動ジャッジ 難易度:
27日前

26

問題文

$14\times 14$ のマス目に以下のように整数を書き込む.ただし,左から $m$, 上から $n$ 番目のマスを $(m,n)$ で表すものとする.

  • $(1,1)$ に $1$ を,$(1,2)$ と $(2,1)$ に $2$ を書き込む.
  • $k\geq 3$ について,すべてのマスに整数が書き込まれるまで以下を繰り返す: $k-2$ が書き込まれているいずれかのマスと,辺を共有せず頂点のみを共有しているマスであり,まだ整数が書き込まれていないようなものすべてに $k$ を書き込む.

いま,PDC 君は $(m,n)$ にいるとき $(m+1,n), (m,n+1)$ に瞬間移動することができ,またそれ以外の移動をすることができない.あるマスからあるマスへの経路について,全ての訪問したマス(出発地点と到着地点を含む)に書き込まれた数字の総和をスコアとする.
$(1,1)$ から $(14,14)$ まで移動するとき,スコアが最小となるような移動方法はいくつあるか?

PDC009 (C)

poinsettia 自動ジャッジ 難易度:
27日前

28

問題文

正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う.
また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す.
このとき,
$$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.

PDC010 (E)

poinsettia 自動ジャッジ 難易度:
3日前

17

問題文

$3\times 1000$ の $2$ つのマス目 $A,B$ があり,これらの $6000$ マスのうち $0$ 個以上に印をつける.印の付け方であり,以下を満たす方法は $N$ 通り存在する.$N$ が $2$ で割り切れる回数を解答せよ.

  • $A$ または $B$ から取り出せる $2\times 2$ の部分マス目(連結成分)であり,印のついたマスの個数が $1$ または $3$ であるようなものを $M$ とすると,$M\geq 1998$ である.