PDC010 (E)

poinsettia 自動ジャッジ 難易度: 数学
2025年10月24日21:00 正解数: 6 / 解答数: 16 (正答率: 37.5%) ギブアップ数: 0
この問題はコンテスト「PDC010」の問題です。

全 16 件

回答日時 問題 解答者 結果
2025年10月24日23:12 PDC010 (E) ゲスト
不正解
2025年10月24日22:37 PDC010 (E) kzy33550336
不正解
2025年10月24日22:32 PDC010 (E) MARTH
正解
2025年10月24日22:13 PDC010 (E) natsuneko
正解
2025年10月24日22:00 PDC010 (E) _caz37_
正解
2025年10月24日21:55 PDC010 (E) _caz37_
不正解
2025年10月24日21:47 PDC010 (E) epsug
正解
2025年10月24日21:39 PDC010 (E) ZIRU
正解
2025年10月24日21:37 PDC010 (E) ZIRU
不正解
2025年10月24日21:35 PDC010 (E) ZIRU
不正解
2025年10月24日21:32 PDC010 (E) jayjay
正解
2025年10月24日21:31 PDC010 (E) jayjay
不正解
2025年10月24日21:30 PDC010 (E) ZIRU
不正解
2025年10月24日21:23 PDC010 (E) jayjay
不正解
2025年10月24日21:20 PDC010 (E) jayjay
不正解
2025年10月24日21:20 PDC010 (E) jayjay
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

PDC010 (F)

poinsettia 自動ジャッジ 難易度:
2日前

12

問題文

以下が成り立つ正の整数の組 $(a_1, a_2, a_3, b_1, b_2)$ のうち,$a_1$ が最小であるようなものの中で,$b_2$ が最も小さいようなものは一意に定まるので,それについて $a_1a_2a_3b_1b_2$ を解答せよ.

  • $a_1\geq a_2\geq a_3, b_1\geq b_2$
  • $a_1 + a_2 + a_3 = b_1 + b_2$
  • $b_1!b_2!$ は $a_1!a_2!a_3!$ で割り切れる.
  • $a_1 = b_1 + 4$

PDC010 (C)

poinsettia 自動ジャッジ 難易度:
2日前

27

問題文

$1\leq a_1 < a_2 < a_3 < a_4 < a_5\leq 100$ をみたす整数の組 $(a_1,a_2,a_3,a_4,a_5)$ すべてについて,次の値の総和を求めよ.
$$\frac{a_1}{1}+\frac{a_2}{2}+\frac{a_3}{3}+\frac{a_4}{4}+\frac{a_5}{5}$$

PDC010 (B)

poinsettia 自動ジャッジ 難易度:
2日前

36

問題文

正の整数について定義され(正とは限らない)整数値を取る関数 $f$ であって,任意の正の整数 $m,n$ について
$$f(mn)=f(m)^2+f(m)f(n)-f(1)$$
を満たすものについて,$(f(1), f(2), …, f(100))$ としてありうる組はいくつ存在するか?

PDC010 (D)

poinsettia 自動ジャッジ 難易度:
2日前

23

問題文

鋭角三角形 $ABC$ について,垂心を $H$,直線 $AH$ と $BC$,$BH$ と $AC$ の交点をそれぞれ $D,E$ とし,線分 $BC$ の中点を $M$ とする.四角形 $BDHP$ が長方形となるように点 $P$ を取ると $\angle APM=90^{\circ}, AE=3, EC=8$ が成立するとき,線分 $AD$ の長さの二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

問題8

tomorunn 自動ジャッジ 難易度:
43日前

26

問題文

数列 ${a_n}$ は $a_{n+1}=\dfrac{2a_n^2}{8-a_n^2}\ (n=1,2,\dots)$ を満たす.
$a_{2025}=-4$ となるような $4$ 以上の実数 $a_1$ の個数を $M$ とするとき,$M$ を素数 $2017$ で割った余りを求めよ.

解答形式

半角数字で入力してください。

E

nmoon 自動ジャッジ 難易度:
23日前

21

問題文

横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.

  • 連続して並んだ $4$ 個の石を選んで,左から $1,2,4$ 個目の石を全て裏返す.

全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください.
 但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.

解答形式

正整数で答えてください.

PDC010(A)

poinsettia 自動ジャッジ 難易度:
2日前

40

問題文

各位の和が奇数であるような,$11$ で割り切れる最小の正の整数を求めよ.

自作問題C1

imabc 自動ジャッジ 難易度:
19月前

6

問題文

以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.

  • $a_0=a_{20000}=0$ .
  • $k=0,1,…,19999$ について $|a_{k+1}-a_k|=1$ .

また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.

  • 以下の条件を全て満たす $1001$ 個の整数の組 $(x_0,x_1,…,x_{1000})$ の個数.
    $\quad$ ・ $k=0,1,…1000$ について $x_k$ は $0$ 以上 $20000$ 以下の 偶数
    $\quad$ ・ $k=0,1,…999$ について $x_k\lt x_{k+1}$ .
    $\quad$ ・ $a_{x_{1000}}=0$ .

階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.

解答形式

答えを入力してください.

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
21月前

6

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.

C

nmoon 自動ジャッジ 難易度:
23日前

40

問題文

nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.

  • 黒板に書かれた $2$ つの正の整数 $x,y$ について,黒板から $x,y$ を消し,$x,y$ の最大公約数と最小公倍数を黒板に書き込む.但し,このとき,操作前と操作後での黒板に書かれた数が,重複を許して全て一致することはないようにする.

全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.

解答形式

正整数で答えてください.

PDC009 (D)

poinsettia 自動ジャッジ 難易度:
25日前

23

問題文

$$x^4-xy^3+y^2=11, x^3y-y^4+x^2=13$$ を満たす複素数の組 $(x,y)$ について,$\dfrac{y}{x}$ としてありうる値の総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

1100

shakayami 自動ジャッジ 難易度:
6月前

28

問題文

$a, b$ を非負整数とします。xy平面上の点 $(0, 0)$から点 $(a, b)$まで、$x$ 軸正方向に1進むか、$y$ 軸正方向に1進むかで到達するための道の数を $C(a, b)$ とします。

$0 \leq a < 1100 $ かつ $0 \leq b < 1100 $ であるような非負整数組 $(a, b)$ であって、$C(a, b)$ が奇数であるようなものの個数を答えてください。

解答形式

答えは非負整数なので,その数値を回答してください.OMCと同じです.