問題10

Youteru 自動ジャッジ 難易度: 数学 > 競技数学
2025年12月13日12:00 正解数: 0 / 解答数: 9 ギブアップ不可
この問題はコンテスト「組合せしか出題しません」の問題です。

Aさんは次のゲー厶を行った。
Aさんはコインを持っていない。
2つのボタンがある。片方を押すと$1/3$の確率でコイン、もう片方を押すと$2/3$の確率でコインが得られる。4050回ボタンを押して2025個のコインが得られるようにAさんが最善の行動をした際、Aさんは次の条件を満たした。
①4050回スイッチを押した後コインを2025持っていた。
②2n回スイッチを押した後コインをn個持っている、という状態が0以上3回以下発生した。(1≦n≦2024)
条件①②を同時に満たす確率をある既約分数$\frac{a}{b}$を用いて
$\frac{a}{b}×_{4050}C_{2025}×(\frac{2}{9})^{2025}$
と表せるので、a+bを求めよ。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

問題12

Youteru 自動ジャッジ 難易度:
23日前

10

次のグラフにおいて、毎ターン1つの線分上を駒が移動するとき、初期位置を点Pとして、1024ターン後に駒が点Pに戻るとき、駒の移動のやり方としてあり得るものの総数を1007で割った余りを求めよ。

問題6

Youteru 自動ジャッジ 難易度:
23日前

13

ボール100個をランダムに20人に分ける。10人が1組の生徒で、10人が2組の生徒である。ボールが全く貰えない人がいてもよい。全てのボールは区別できず、分け方は$ _{119}C_{19}$通りあるが、それぞれの分け方は同様に確からしい。
1組の生徒のうち、それぞれの持つボール数の総積をポイントとする。ポイントの期待値は互いに素なA,Bで$\frac{A}{B}$と表せるので、A+Bを解答せよ。

問題15

Youteru 自動ジャッジ 難易度:
23日前

12

※この問題は人力で解けることを想定していない可能性があります。

平安時代には次のルールがある。
・男性が3日連続女性の家に通ったらその女性と結婚が成立する。
・男性が3年(1095日)間一切女性の家に通わなかったらその女性と離婚が成立する。
1人の男性が同時に女性と結婚できる人数は最大X人であり、女性の家に通いはじめてからX人の女性と結婚するのに必要な日数の最小値はY日である。XとYの10進数における文字列の結合を解答しなさい。ただし、1人の男性が1日に通える女性の家は1つだけである。
(寿命や重婚に対する刑罰は考慮しないものとする)

問題7

Youteru 自動ジャッジ 難易度:
23日前

15

3つの空箱がある。次のルールで2人で交互に石を箱に入れる。
・どちらかの行動を行う
 ・1つの箱に1つ石を入れる。
 ・既に石が入っている1つの箱に、今入っている個数の石をその箱に入れる
(つまり、石の個数が倍になる)
・ただし、既に箱にN個以上入っている場合はこれ以上石を入れられない

全ての山の石の個数をそれぞれN以上にした方が勝ちである。後手必勝となる2025以下のNの総和を求めよ。

問題5

Youteru 自動ジャッジ 難易度:
23日前

26

N×Nのマス目にNこの駒を置くと、ある面積N以上の長方形のエリアで、エリア内に駒が存在しないものは存在しなかった。このような駒の配置方法の総数をf(N)として、$\displaystyle \sum _{i=1}^{\infty } f( i)$を計算して下さい。

問題14

Youteru 自動ジャッジ 難易度:
23日前

4

Sを0以上10以下の自然数の集合として、
P君は、xy座標平面$S^2$の盤面上で、スタートからゴールへ移動する。xが増加する方向が右で、yが増加する方向が上である。6種類の点が存在する。
スタート…(0,0)で、P君が可能な動きはバイオレットと同じである。
ゴール…(10,10)
ネイビー…スタート、ゴール以外の点について、xがyの倍数なら(x,y)はネイビーであり、xがyの倍数でないなら(x,y)はネイビーでない。P君はネイビーに移動できない。
バーミリオン…P君がこの点にいるとき、P君は1つ上へ移動するか、2つ右、1つ下に飛んで移動することができる。
バイオレット…P君がこの点にいるとき、P君は1つ右へ移動するか、2つ上、1つ左に飛んで移動することができる。
アイボリー…P君はアイボリーに移動できない。アイボリーは全部で5個存在する。

ただし、P君が移動して座標平面$S^2$から飛び出てはいけない。
全ての$S^2$に含まれる点のうち、スタート、ゴール、ネイビー以外の点に自由にバーミリオン、バイオレット、アイボリーのいずれかを塗ることができ、その盤面AについてP君がスタートからゴールに行く方法の総数をF(A)とする。
F(A)の最大値をXとし、
全ての盤面Aについて、F(A)の総和をYとし
Yを10007で割った余りをZとして、XとZの10進法における文字列の結合を求めよ。

第10問

sulippa 採点者ジャッジ 難易度:
7月前

1

問題文

数列 ${a_n}$ ($n \ge 0$) が、初期値 $a_0 = 3$ および以下の漸化式で定義されるとする。
$$a_{n+1} = a_n^2 - 2 \quad (n \ge 0)$$
この数列の一般項 $a_n$ を求めよ。
ただし、黄金比を$Φ$とする。


解答形式

例)ひらがなで入力してください。

はんぺん

Azarashiii 自動ジャッジ 難易度:
15月前

1

問題文

$x>1 , y>1$で、
$α = log_4 x , β = log_8 y $ と定める。 $2α + 3β =2 $ のとき、$x+y $ のとりうる最小の値を求めよ。

Final 2にする予定だったもの

seven_sevens 採点者ジャッジ 難易度:
23月前

1

間違えて公開してしまい、回答を一件いただいているので、泣く泣くボツ問としてここに供養します。

$\min(f(x))$を関数$f(x)$の$-\frac{\pi}{2}\leq x\leq\frac{\pi}{2}$における最小値とする。
以下の値を求めよ。
$$\int^{16}_0\min(\tan^2{x}+a\cos{x})da$$
ただし$a$と$x$は独立している。

simasima 自動ジャッジ 難易度:
10月前

1

問題文

非常に細長いガムテープがあります。このガムテープは $M$ 個の区画に分かれています。ここで、$M$ は非常に大きい整数です。

はじめ、ガムテープには何も描かれていません。じーえむ君は $M$ 回以下の操作を行い、絵を描きます。

  • まだ何も塗られていない隣接する二つの区画を一様ランダムに選び、黒く塗る。そのような区画が存在しない場合は何もしない。

操作が終わった後黒く塗られている区画の数を $X$ とします。
$M$ が限りなく大きくなるときの $\frac{X}{M}$ の期待値の極限を求めてください。

解答形式

答えとなる値を $p$ として $10^{10}p$ の整数部分を求めてください。
なお、以下の定数表を参考にしても構いません。
https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%AE%9A%E6%95%B0

自作問題2

iwashi 自動ジャッジ 難易度:
21月前

1

問題文

表面積が$\displaystyle n \sin \frac{2\pi}{n}$である正$n$角錐の体積の最大値を$V_n$とする。極限値
$$\begin{eqnarray}
A &=& \lim_{n \to \infty} V_n \\
B &=& \lim_{n \to \infty} n^2 (V_n -A )
\end{eqnarray}$$を求めよ。

解答形式

$A,B$は
$$
A = \fboxア \frac{\pi^\fboxイ}{\fboxウ} , \qquad B = \fboxエ \frac{\fboxオ \pi^\fboxカ}{\fboxキ}
$$となるので文字列「$\fboxア\fboxイ\fboxウ\fboxエ\fboxオ\fboxカ\fboxキ$」をすべて半角で1行目に答えてください。ただし$\fboxア\fboxエ$は$\texttt{+-}$のどちらか、$\fboxイ\fboxウ\fboxオ\fboxカ\fboxキ$は自然数であり、$\fboxオ$と$\fboxキ$は互いに素です。例えば$\displaystyle A=+\frac{\pi^{2}}{3},B=-\frac{5\pi^{7}}{11}$としたいときは+23-5711と回答してください。計算して-5688とはしないでください。

漸化式②

Americium243 自動ジャッジ 難易度:
2月前

2

問題文

正の整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$
を満たしている。
${|a_{2025}|}$ の正の約数の個数を求めよ。

解答形式

整数で入力してください