正方形(より一般には平行四辺形)の中心を通る直線は、もとの図形の面積を二等分する。なお、正方形の1頂点が共有されていることに意味はない。
この問題を解いた人はこんな問題も解いています
半円弧を組み合わせた以下の図について、緑で示した部分の面積を求めてください。 大きい半円の直径は6、小さい半円弧の直径は3であり、大きい半円の弧は灰色の点によって6等分されています。
解答は $\dfrac{a}{b}\pi$ となるので、$a+b$ を解答してください。 ただし、$a,b$ は互いに素な正整数です。
図の条件の下で、青で示した角の大きさを求めてください。
$x=a$ 度 です。$a$ に当てはまる、0以上180未満の値を半角数字で解答してください。
解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。 単位("度・°"など)はつけないでください。
扇形の内部に図のように線を引きました。赤い線分の長さが$2\sqrt 5$のとき、青い線分の長さを求めてください。
半角数字で解答してください。
正方形・正三角形・円を組み合わせた以下の図について、$x$で示した角の大きさを求めてください。
半角数字で、0以上180未満の整数を解答してください。 「度」や「°」などの単位を付けないよう注意してください。
正方形に図のように線を引きました。外側の正方形の一辺が10のとき、青で示した部分の面積を求めてください。
解答は自然数 $a,b$ によって $\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。
正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.
0以上180未満の整数を半角数字で解答してください。 ただし度数法で、単位を付けずに解答してください。
半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。
正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。
正方形と正三角形を組み合わせた以下の図において、青で示した角の大きさを求めてください。
半角数字で解答してください。 解答は度数法で、単位を付けずに0以上180未満の整数として解答してください。
2つの正方形が図のように配置されています。赤い線分の長さが4のとき、2つの正方形の面積の合計を求めてください。
図の条件において、$x$ の長さを求めてください。 なお、図中オレンジの点は直角三角形の内心です。
解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。