利用規約更新のお知らせ (2024年2月7日1:16)
利用規約の更新を行いました。ページ下部の「利用規約」より、改訂後の利用規約をご確認ください。変更後もユーザーが異議なく利用継続した場合、変更後の利用規約に同意したものとみなします。

求面積問題30

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2021年12月12日10:36 正解数: 7 / 解答数: 8 (正答率: 87.5%) ギブアップ数: 0

全 8 件

回答日時 問題 解答者 結果
2024年2月2日17:22 求面積問題30 natsuneko
正解
2023年12月11日0:26 求面積問題30 nmoon
正解
2022年3月17日16:46 求面積問題30 tima_C
正解
2022年3月17日16:44 求面積問題30 tima_C
不正解
2022年3月9日15:55 求面積問題30 ゲスト
正解
2021年12月15日19:38 求面積問題30 naoperc
正解
2021年12月12日17:03 求面積問題30 ゲスト
正解
2021年12月12日16:32 求面積問題30 ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

16月前

4

【補助線主体の図形問題 #075】
${
\def\mytri#1{\triangle \mathrm{#1}}
}$ 今週の図形問題のテーマは面積関係です。便宜的に$\mytri{ADP}$の面積を問うていますが、まずは$\mytri{ACP}:\mytri{ADP}$を経由すると考えやすいかと思います。想定解は暗算でも処理可能ですが、どうぞお好きなように解いてやってください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

正三角形と円の求角

tb_lb 自動ジャッジ 難易度:
2年前

8

【補助線主体の図形問題 #041】
 2021年最後の投稿となりました。本問も変わらず発想次第では暗算での処理が可能です。自信のある方は紙・ペンを利用せず、脳内処理だけで解いてみてください!

★予告★

${}$ 週に1回、補助線主体の初等幾何のお送りしてきましたが、年明けは西暦である2022を織り込んだパズルや整数問題などをお送りします。曜日と関係なく、1月1日もしくは2日から6~7日連続して投稿する予定です。ぜひご期待ください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ハート型の詰め込み

tb_lb 自動ジャッジ 難易度:
2年前

7

【補助線主体の図形問題 #046】
 バレンタイン直前なのを意識してこんな図形問題を用意してみました。イベント便乗の色物問題ですが、方針次第では暗算で処理できるのはいつも通りです。補助線と共に存分にお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

長方形と3つの円

tb_lb 自動ジャッジ 難易度:
21月前

4

【補助線主体の図形問題 #056】
 今週の図形問題は内心多めでお送りします。直感でいろいろ断定したくなりますが、ぐっとこらえて論証まで楽しんでいただけたら幸いです。暗算解法も仕込んでありますよ!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求長問題27

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

図の条件が成り立つ三角形において、$x$ で示した辺の長さを解答してください。

解答形式

$x=\sqrt{\fbox{アイウ}}$ と表されるので、文字列 アイウ を解答してください。

求角問題15

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。
単位("度・°"など)はつけないでください。

求角問題11

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

正方形と正三角形を組み合わせた以下の図において、青で示した角の大きさを求めてください。

解答形式

半角数字で解答してください。
解答は度数法で、単位を付けずに0以上180未満の整数として解答してください。


【補助線主体の図形問題 #037】
 ここ数回、正多角形がらみの出題が続いたので、今回は円を登場させてみました。補助線しだいで暗算で処理可能なのはいつもと変わりません。あれやこれやと試行錯誤をお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求長問題29

Kinmokusei 自動ジャッジ 難易度:
2年前

6

問題文

図の条件において、$x$ の長さを求めてください。
なお、図中オレンジの点は直角三角形の内心です。

解答形式

解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。

求角問題12

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.

解答形式

0以上180未満の整数を半角数字で解答してください。
ただし度数法で、単位を付けずに解答してください。

求面積問題23

Kinmokusei 自動ジャッジ 難易度:
2年前

9

問題文

半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。

解答形式

半角数字で解答してください。


【補助線主体の図形問題 #026】
 今回は、たびたび取り上げている傍心に二等辺三角形を組み合わせてみました。暗算解法が仕込まれているのはいつも通り変わりません。補助線を武器に傍心の性質をあぶり出しながらお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\jpara{\mathrel{\unicode{x2AFD}}}
\renewcommand\deg{{}^{\circ}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\myang#1{\angle \mathrm{#1}}
\def\jsim{\mathrel{\unicode[sans-serif]{x223D}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 前半の方針
  2. ヒント1の内容を具体的に
  3. 後半の方針