金木犀の自作問題(2022/06/05)

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2022年6月5日2:24 正解数: 6 / 解答数: 6 (正答率: 100%) ギブアップ数: 1

全 6 件

回答日時 問題 解答者 結果
2024年3月27日19:10 金木犀の自作問題(2022/06/05) hairtail
正解
2024年3月1日21:10 金木犀の自作問題(2022/06/05) natsuneko
正解
2023年12月18日18:08 金木犀の自作問題(2022/06/05) nmoon
正解
2023年6月18日15:03 金木犀の自作問題(2022/06/05) ゲスト
正解
2022年9月28日14:14 金木犀の自作問題(2022/06/05) tima_C
正解
2022年6月6日2:46 金木犀の自作問題(2022/06/05) naoperc
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

2年前

6

問題文

図の条件の下で、赤で示した線分の長さを求めてください。

解答形式

半角数字で解答してください。

2年前

5

問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。
なお、図中の赤点(centroid)は三角形の重心です。

解答形式

$x^2$ は正整数になるので、この値を解答してください。

求角問題17

Kinmokusei 自動ジャッジ 難易度:
2年前

8

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。
ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。

2年前

5

問題文

図の条件の下で、青で示した線分の長さを求めてください。

解答形式

半角数字で解答してください。

2年前

6

問題文

図の条件の下で、緑で示した三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題30

Kinmokusei 自動ジャッジ 難易度:
2年前

9

問題文

正三角形・長方形・半円を組み合わせた以下の図形について、図中緑の線分の長さが6のとき、図形全体の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題29

Kinmokusei 自動ジャッジ 難易度:
2年前

7

問題文

図の条件において、$x$ の長さを求めてください。
なお、図中オレンジの点は直角三角形の内心です。

解答形式

解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。

求角問題16

Kinmokusei 自動ジャッジ 難易度:
2年前

7

問題文

正六角形内に、図のように円を配置しました。青で示した角の大きさを求めてください。

解答形式

$\angle x=a°$ です。$a$ に当てはまる0以上180未満の数値を半角で回答してください。

2年前

7

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

$x=a$ 度です。$a$ を半角数字で解答してください。

求角問題15

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。
単位("度・°"など)はつけないでください。

3年前

7

【補助線主体の図形問題 #020】
 今週の図形問題は円がらみの求長問題を用意しました。いつも通り暗算解法も仕込んであります。初等幾何猛者の方はぜひ脳内で処理しきってみてください。猛者とまではいかないという方もじっくりと挑戦してもらえたら嬉しいです!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\myang#1{\angle \mathrm{#1}}
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2をやや具体的に
  4. ヒント3の続き

【補助線主体の図形問題 #037】
 ここ数回、正多角形がらみの出題が続いたので、今回は円を登場させてみました。補助線しだいで暗算で処理可能なのはいつもと変わりません。あれやこれやと試行錯誤をお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。