全問題一覧

カテゴリ
以上
以下

柏陽祭2025 (B)

ulam_rasen 自動ジャッジ 難易度:
2月前

39

辺$AB$と辺$BC$と辺$CD$の長さが等しい凸四角形$ABCD$について, 辺$BC$と辺$AD$の中点をそれぞれ$M$, $N$としたところ, 以下が成り立ちました.
$$
\angle BAD=75°, \angle CDA=45°, MN=3
$$

このとき, 四角形$ABCD$の面積は正整数$a, b$を用いて$a+\sqrt{b}$ と表すことができるので, $a+b$ の値を求めてください.

各桁の積

smasher 自動ジャッジ 難易度:
2月前

8

問題文

ある非負整数$n$に対し、$f(n)$で$n$の各桁の積を表すものとする。
$n=f(n)$を満たす$n$の個数を求めよ。

解答形式

有限ならば半角数字でその個数を、無限ならば$-1$を入力してください。

無限入れ子根号の発散性

Hensachi50 採点者ジャッジ 難易度:
2月前

0

問題文

$$\sqrt{2+\sqrt{3+\sqrt{5+\sqrt{7+\sqrt{11+\sqrt{13+...}}}}}}$$
この無限入れ子根号は、発散するのか。

解答形式

証明をしてください。

無限入れ子根号の発散性

Hensachi50 採点者ジャッジ 難易度:
2月前

0

問題文

$$\sqrt{2+\sqrt{3+\sqrt{5+\sqrt{7+\sqrt{11+\sqrt{13+...}}}}}}$$
この無限入れ子根号は、発散するのか。

解答形式

証明をしてください。


問題文

初めのブロックの体積をxとし、それを二等分する作業一回をnとする。
例:1→2→4→8 のように二等分する。この時、n =3であり、最後のブロックの数は8である。また全体を通して7回二等分している。この時、次の問いに答えよ。

(1)最後のブロックの数が4194304の時、nの値を求めよ
(2)n =12であり、最後のブロック1つの体積が10であるとき、xの値を求めよ
(3)全体を通して二等分した回数をnを用いて表せ
(4)今まで二等分されたブロックの数の和をnを用いて表せ
例:n=1の時、ブロックの和は3、n=2の時、ブロックの和は7、n=3の時、ブロックの和は15

解答方法

(1)◯◯
(2)◯◯
(3)◯◯
のように行を変えて答えなさい。
n=、x=などは必要ありません。 累乗の指数の項が複数ある場合は()をつけなさい
例:3^(x+3)、4^3
マイナスはハイフンで答えなさい。→-

2月前

0

問題文


(1) 自然数 $n$ について、$\cos\theta = x$ とおくと $\cos n\theta$ が $x$ の多項式で表せ、またその係数はすべて整数となることを示せ。

(2) $\cos 36^\circ,\ \cos 72^\circ$ を求めよ。

(3) 自然数 $n$ について、$n$ が 5 の倍数でないとき、$\cos(n^\circ)$ は無理数であることを示せ。

(4) $n$ 次の多項式

$$
A_n x^n + A_{n-1} x^{n-1} + \cdots + A_1 x + A_0 = 0
$$

について、これが有理数解をもつならば、その解は

$$
\frac{\text{定数項 } A_0 \text{ の約数}}{\text{最高次の係数 } A_n \text{ の約数}}
$$

の形で表されることを示せ。

(5) $0<n<90$ を満たす自然数 $n$ について、$\cos(n^\circ)$ が有理数となる $n$ はいくつ存在するか。


せいすう

k4rc 自動ジャッジ 難易度:
2月前

18

問題文

$4999$ 以下の素数の組 $(p,q,r,s)$ が以下の式を満たしているとき,積 $pqrs$ が取りうる値の総和を解答してください.
$$ pqr+pqs-p^2 = q^2+2 $$

解答形式

正の整数を半角で解答.


三角形 ABC の頂点は A(0,0), B(6,0), C(4,6) である。

AC の中点を通り、BC に垂直な直線の方程式を求めよ。

この直線と AB の交点を求めよ。

この交点から頂点 C までの距離を求めよ。

問題6

tomorunn 自動ジャッジ 難易度:
2月前

18

問題文

3以上の正整数 $n$に対し, $$ {}_nC_1, {}_nC_2, \dots, {}_nC_{n-1} $$の $n-1$個の数から $n-2$個を選んだときのそれらの最大公約数を $d$ とする.
全ての選び方について $d$ の総和を $d(n)$とする.100以下の$n$であって, $d(n)\le100$となる $n$の個数を求めよ。

解答形式

半角数字で入力してください。

問題2

tomorunn 自動ジャッジ 難易度:
2月前

11

問題文

格子点上を,点 $P$ は $(0,2)$ から $(6,8)$ へ,点 $Q$ は $(2,0)$ から $(8,6)$ へ最短経路で進む.
このとき,2 本の経路が交差しない(頂点共有もしない)組の総数を求めよ.

解答形式

例)半角数字で入力してください。

問題8

tomorunn 自動ジャッジ 難易度:
2月前

26

問題文

数列 ${a_n}$ は $a_{n+1}=\dfrac{2a_n^2}{8-a_n^2}\ (n=1,2,\dots)$ を満たす.
$a_{2025}=-4$ となるような $4$ 以上の実数 $a_1$ の個数を $M$ とするとき,$M$ を素数 $2017$ で割った余りを求めよ.

解答形式

半角数字で入力してください。

問題5

tomorunn 自動ジャッジ 難易度:
2月前

8

問題文

区別できる6個の箱に区別できる球を12個入れる(球が1つも入っていない箱があってもよい).
$i$ 番目の箱に入っている玉の数を $A_i$ とする.
入れ方すべてについて,積 $A_1^2 A_2^2\cdots A_6^2$ を計算し,その和を求めよ.

解答形式

半角数字で入力してください。