公開日時: 2025年4月26日9:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
NK君は誕生日を迎えました。
そのことを友達のGW君に伝えようと思っています。
そのまま言っては面白くないので、日付についてこう述べることにしました。
「僕の誕生日は、月と日をくっつけると、179の倍数になるよ」
NK君の誕生日を求めて下さい。
半角数字で値を入力して下さい(/も忘れずに)
幾つか例を置いておきます.
1月1日⇒1/1
12月1日⇒12/1
1月12日⇒1/12
12月12日⇒12/12
公開日時: 2025年4月26日9:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
SKG学院の文化祭では,1から10の目が一つずつ書かれた十面体の歪んだダイスを配布しています.このダイス十個に$1$から$10$までの番号をつけることにしました.
ここで以下のような事実が分かっています.
また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.
・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.
この十個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.
半角数字で入力して下さい.
公開日時: 2025年4月25日4:06 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
ある町 $A$ がある. 町 $A$ にはいくつかの家と$,$それらを双方向に結ぶいくつかの道路からなる. さらに$,$ 以下の条件を満たす.
・家は $2025$ 個からなり$,$ $1$$,$ $2$$,$ ⋯$,$ $2025$の番号がつけられている.
・道路は $2024$ 本ある.
・どの家からどの家へまでもいくつかの道路を通って移動可能である.
また$,$ 家 $i$ の 便利さ を以下のように定義します. ( $i$ の番号が付けられている家を家 $i$ と呼びます. )
$$
i \times (家iからちょうど1本の道路を通って移動可能な家の数)
$$
さらに$,$ 町 $A$ の スコア を$,$ すべての家の 便利さ の総和と定義します.
道路の結ばれ方としてありうるものすべてについて$,$ 町 $A$ の スコア の総和の正の約数の個数を求めてください.
スコア の総和の正の約数の個数を求め$,$ 1行に半角で解答してください.
必要であれば電卓や素数表を用いてください.
公開日時: 2025年4月24日17:52 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
それぞれの面に $1,2,3,4,6,9$ が書かれたどの面も等確率に出る $6$ 面サイコロ $D$ があります.
$D$ を $1018$ 回転がしたときを考える.その出た目の総積を $T$ とし,そのときのスコアを以下のように定義します.
スコアの期待値が非負整数 $A$ を用いて $\dfrac{A}{6^{1018}}$ と表せるので $A$ を素数 $1013$ で割ったあまりを求めてください.
半角数字で非負整数を入力してください。
公開日時: 2025年4月21日21:48 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$a,b,c\ (a\neq0)$ を実数とする.放物線 $y=ax^2+bx+c$ が,$3$ 直線
$\ y=x-2,\ y=-3x+2,\ y=7x-3$
の全てと接するとき,$a,b,c$ の値を求めよ.
答えは,$a,b,c$ の値をそれぞれ $1,2,3$ 行目に記入せよ.ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
のように記入して答えよ.
【解答例】
1
-2
-1/3
公開日時: 2025年4月20日20:50 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 採点者ジャッジ
次の方程式を解いて、$x$の値をすべて求めてください。
$$x^5+2x^4+3x^3+3x^2+2x+1=0$$
$a,b,c,d,e$のように解答してください。($π$はpiで$i$(虚数単位)はiで分数は$\frac{1}{2}$の場合は1/2のように解答してください。)
公開日時: 2025年4月18日15:07 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
方程式 $x^2+xy+y^3=7$ の表す図形を $y$ 方向に $\fbox{ (1) }$ 平行移動してから $\fbox{ (2) }$ に関して対称移動し,$x$ 方向に $\fbox{ (3) }$ 平行移動し,$\fbox{ (4) }$ に関して対称移動すると,方程式 $x^3-3x^2+xy-y^2+5y=0$ の表す図形となる.
以上の空欄 $(1)\sim(4)$ を適切に補充せよ.ただし,$(1),(3)$ には数値を答え,$(2),(4)$ には以下の語群から言葉を選び答えよ.
【語群】
$\mathrm A.\,x$ 軸
$\mathrm B.\,y$ 軸
$\mathrm C.$ 直線 $y=x$
答えは,空欄 $(1),(2),(3),(4)$ に当てはまる数または記号をそれぞれ $1,2,3,4$ 行目に記して答えよ.
ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
と記すこと.
【解答例】
3
A
-5/13
B
公開日時: 2025年4月16日22:13 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
面積 $1$ の平行四辺形 $\mathrm{ABCD}$ に対し,辺 $\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}$ の中点をそれぞれ $\mathrm K,\mathrm L,\mathrm M,\mathrm N$ とする.$8$ 直線 $\mathrm{AL},\mathrm{AM},\mathrm{BM},\mathrm{BN},\mathrm{CN},\mathrm{CK},\mathrm{DK},\mathrm{DL}$ によって囲まれてできる $8$ 角形の面積を求めよ.
ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.