全問題一覧

カテゴリ
以上
以下

Weskdohn

公開日時: 2024年7月27日20:17 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$X$($0<X<2025$)個の玉から$Y$($0<Y<2025$)個を同時に取り出す操作を考える.
この操作が成り立つ$X,Y$について,玉の取り出し方の総和を求めなさい.

但しボールは互いに区別できるものとする.

解答形式

答えは$a^b+c(a,b,c∈ℤ)$通りと書けます.$a,b,c$として様々なものがありますが,
$a+b+c=Z(Z∈ℤ ,Z>0)$について$MIN(Z)$の値を求めて下さい.

追記:8/6日問題文の訂正を行いました.もし,もとの問題文のせいでミスしたという方がいましたら,大変申し訳ありません。

sdzzz

公開日時: 2024年7月27日9:44 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ があり,外心を $O$ とした時以下が成り立ちました.
$$
AB+AC=2BC,\quad AB\times AC=24,\quad AO=5
$$
この時,三角形 $ABC$ の内接円の半径の値を求めてください.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください.

MrKOTAKE

公開日時: 2024年7月25日20:29 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

AB=5, AC=7の△ABCがあり重心をG,内心をIとするとBC//GIであった. このとき△ABCの面積の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

326_math

公開日時: 2024年7月25日18:59 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

四角形 $ABCD$ があり,以下を満たしています:

$$
\angle B + \angle C = 120^{\circ} , \angle D = \angle B + 30^{\circ} , AB = CD = 7 , BC = 13 .
$$

このとき,辺 $AD$ の長さの $2$ 乗を解答してください.

解答形式

半角数字で解答してください.

kusu394

公開日時: 2024年7月24日22:36 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正角形 $ABCDEF$ について,辺 $AB,BC,DE, EF$ 上にそれぞれ点 $P,Q,R,S$ があり,
$$AP =1,\ \ BQ =2,\ \ DR =3,\ \ ES =4$$ が成り立ちます.四角形 $PQRS$ の面積が $64\sqrt3$ のとき,正六角形の一辺の長さは正の整数 $a,b$ を用いて $a + \sqrt b$ と表せるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

y

公開日時: 2024年7月22日12:04 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
|\int_{0}^{n}\sqrt{m^\frac{log_{2}{16}}{log_{2}{4}}}dm|\\について、n<0のときの値を求めてください。
$$

SU-JACK

公開日時: 2024年7月21日21:49 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

高校数学 方程式 比例式

問題文

正の実数$x,y,z$が$$(x+1)y^2=(x−1)z^2=\frac{3}{5}xyz$$
を満たすとき、
$$\frac{z}{y}=?$$

解答形式

例)?に入る数値を入力してください。

cipher703516247

公開日時: 2024年7月21日1:34 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

cipher君は98%の確率で佐える。いまからcipher君が佐うのを失敗するまでに佐える回数をPとする。
Pの分散を求めろ

解答形式

非負整数で求めろ

Lamenta

公開日時: 2024年7月20日22:42 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

因数分解

問題文

$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。

解答形式

半角数字で解答してください。

SU-JACK

公開日時: 2024年7月17日21:06 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

数列 高校数学 漸化式

問題文

$$
a_1=b_1=2025,
\begin{cases} a_{n+1}=a_n-2n+b_{2028}\\ b_{n+1}=b_n+4n+a_{2028}\end{cases}
$$

について、$a_n$の一般項を
$$a_n=α−(n−1)(n−β)$$と表したとき、$β$の値を求めよ

bzuL

公開日時: 2024年7月14日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

ある三角形の内心を中心とする半径 $2024$ の円が,その三角形の頂点のうちの一つと,その三角形の外心,垂心を通りました.この三角形の外接円の半径としてあり得る値の総和の整数部分を求めてください.

解答形式

半角数字で解答してください.

bzuL

公開日時: 2024年7月14日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$10$ 進数での桁和が $2500$ となる正整数であって, $2024$ の倍数となるものうち,最小のものを $M$ とします.$M$ を $10$ 進表記したときの $10^{k-1}$ の位の値を $M_k$ としたとき,$1\leq M_k \leq 8$ を満たす $k$ の総積を $10000000$ で割った余りを答えてください.
ただし,以下の $10^n$ を $2024$ で割った余りに関する表を用いて構いません.

$$
\begin{array}{c:ccccccccc}
n & 3 &4 & 5 & 6 & 7 & 8 & 9 \\
\hline
10^n\pmod{2024} &1000 & 1904 &824& 144 & 1440& 232& 296
\end{array}\\\\
\begin{array}{ccccccccc}
10 & 11& 12 & 13 &14 & 15 & 16 & 17 & 18\\
\hline
936& 1264 & 496 &912 & 1024 &120 &1200 & 1880 & 584
\end{array}\\\\
\begin{array}{ccccccccc}
19 & 20 & 21 & 22 & 23 & 24 &25\\
\hline
1792 & 1728 & 1088 & 760 & 1528 & 1112 & 1000
\end{array}
$$

解答形式

半角数字で解答してください.
たとえば $M=9876543210$ であれば,$M_1=0,M_2=1,\ldots,M_{10}=9$ となるため,$1\leq M_k \leq 8$ を満たす $k$ の総積は $2 \times \cdots \times 9= 362880$ となります.